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The Hubbard-Holstein model is a simple model including both electron-phonon interaction and electron-electron correlations.
We review a body of theoretical work investigating, the effects of strong correlations on the electron-phonon interaction. We focus
on the regime, relevant to high-Tc superconductors, in which the electron correlations are dominant. We find that electron-phonon
interaction can still have important signatures, even if many anomalies appear, and the overall effect is far from conventional. In
particular in the paramagnetic phase the effects of phonons are much reduced in the low-energy properties, while the high-energy
physics can still be affected by phonons. Moreover, the electron-phonon interaction can give rise to important effects, like phase
separation and charge-ordering, and it assumes a predominance of forward scattering even if the bare interaction is assumed to be
local (momentum independent). Antiferromagnetic correlations reduce the screening effects due to electron-electron interactions
and revive the electron-phonon effects.

1. Introduction

A wealth of materials, including the most challenging sys-
tems (cuprates, manganites, fullerenes, etc), present clear sig-
natures of both electron-electron (e-e) and electron-phonon
(e-ph) interactions, leading to a competition-or- interplay
which can give rise to different physics according to the value
of relevant control parameters and of the chemical and elec-
tronic properties of the materials. The results presented in
this paper are mainly motivated by high-temperature super-
conductors, with the copper-oxide compounds (cuprates)
in a prominent role, and an attention to the alkali-doped
fullerides.

In the case of the cuprates, which are arguably the
most accurately studied materials in the last twenty-five
years, the signatures of electron-phonon interactions are
nowadays clear, even though the overall scenario is far from
ordinary [1–3]: Electron-phonon fingerprints are evident
in some properties, while they are weak or absent in
other observables. Specifically, clear polaronic features are
observed in optical conductivity [4–6] as well as in angle-
resolved photoemission experiments (ARPES) [7] in very
lightly doped compounds. A substantial e-ph coupling can
also be inferred by the Fano line shapes of phonons in
Raman spectra and by the rather large frequency shift and

linewidth broadening of some phonons at Tc. Phonons are
also good candidates to account for the famous “kink” in the
electronic dispersions observed in ARPES experiments [8, 9].
Tunneling experiments are often advocated as providing the
most important evidence of strong e-ph coupling [10]. Also
Scanning Tunneling Spectroscopy measurements suggest a
direct role of a phonon mode in superconductivity [11].
Isotope effects on different quantities can be sizable, even if
they present highly unconventional features [12].

On the other hand, phonons, which typically affect
resistivity in standard metals, hardly appear in transport
experiments on cuprates. For instance, the resistivity around
optimal doping is ubiquitously linear in temperature (even in
systems with relatively low critical temperature) [13–16] and
no high-temperature saturation seems to be present up to the
highest achieved temperatures [17]. While in the overdoped
materials the resistivity evolves towards a T2 Fermi-liquid
behavior, it is the whole scenario at all dopings (and the
material dependencies), which contrasts with the relevance
of e-ph interaction in transport (at least in its standard
formulation). If one were just considering cuprates with
rather high critical temperatures around optimal doping
(like, e.g., YBa2Cu3O7) one would not find it difficult to
get a reasonable agreement between transport experiments
and the standard e-ph approach [10]. This dichotomous
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behavior of cuprates, which display clear phononic features
in some experiments and limited effects in others is one of
the puzzling and challenging issues raised in these materials.

Although there is a wide range of suggestions for
the superconducting mechanism, it is almost universally
recognized that a key player in the cuprate game is the
e-e correlation. Electron-electron correlation makes the
parent compounds Mott insulators, and is expected to be
important at least in the pseudogap region. Therefore, it is
not surprising that the signatures of e-ph interaction in the
cuprates can hardly be understood in terms of the standard
theory of e-ph interactions in weakly correlated metals, and
a new theoretical framework including e-e correlations is
needed. We will argue here that this change of perspective
can indeed reconcile the different relevance of phonons in
the various observables in correlated systems.

On the other hand, the superconducting members of
the fulleride family, of composition A3C60 with A an alkali-
metal atom, are often considered as standard phononic
superconductors, in which the coupling between electrons
and the local vibrations associated the distortion of the
carbon buckyballs is the driving force of superconducting
pairing [18]. The conventional nature of these compounds
is indeed challenged by recent investigations in expanded
fullerides revealing several physical properties associated to
e-e correlations [19]. Indeed, the Cs3C60 solid with A15
structure is an antiferromagnetic Mott insulator at ambient
pressure which becomes superconducting only under applied
pressure, with Tc reaching 38 K [20, 21]. The phase diagram
as a function of pressure closely resembles that of cuprates as
a function of doping, suggesting a central role of correlations.
Consequently, e-e interactions are expected to be important
in other members of the fulleride family. Indeed, it has
been shown that, thanks to the orbital degeneracy and the
Jahn-Teller nature of the relevant phonons, there is no
contradiction between a phononmediated superconductivity
and the relevance of electronic correlations, and the two
interactions turn out to cooperate in providing relatively
high critical temperature [22].

In an extremely broad sense, these materials (cuprates
and fullerides), as well as many others that we did not
talk about, raise the same conceptual problem, namely the
investigation of systems in which both e-e interaction and
e-ph coupling are nonnegligible and the physics can be
explained only taking both into account. On the other hand
the same phenomenology suggests that this competition may
result in completely different physics according to specific
aspects of the materials. In general, we can expect different
behaviors because of: (i) Different parameters within the
same model (e.g., which is the largest scale between electron-
phonon interaction and electron-electron repulsion); (ii)
Different form for the interaction term, or more generally,
different models.

Here we focus on point (i), and we choose an extremely
simplified model, the Hubbard-Holstein model, in which
one band of correlated electrons with local Coulomb repul-
sion is coupled with a dispersionless phonon mode and
the coupling only involves the local electronic charge [23].
Even for this simplified model we immediately realize that

several relevant physical parameters control the physics. As
we will discuss in the following section, we have to deal at
least with the electronic bandwidth, the Coulomb repulsion,
the strength of electron-phonon interaction, the phononic
frequency and the chemical potential that controls the band
filling. This determines a multidimensional phase diagram,
which can hardly be understood in its entirety within a single
analysis and it is expected to present several different regimes.
Therefore, even if we choose one given simple model, it
may be useful to focus on a given physical regime, which
essentially implies to select a hierarchy between the different
energy scales, or to fix (or neglect) some of them.

Our choice is to focus on the “strongly correlated”
metallic phases, that is, on system in which the Coulomb
repulsion is the largest energy scale, and the system is either at
half-filling (number of electrons equal to the number of sites)
or close. The polar star of this work is the understanding
of the fate of electron-phonon interaction in systems that
are dominated by electron-electron interactions such as the
cuprates. Nonetheless, our discussion will also follow some
detours, which will help us to build a more comprehensive
picture of the competition between the two interactions. One
of these detours will touch point (ii) addressing the role of
the phonon symmetry in its interplay with correlations. This
point is crucial for the understanding of the synergy between
e-ph interaction and e-e correlation in the fullerenes.

The paper is organized as follows: In Section 2 we
introduce the Hubbard-Holstein model. Section 3 is devoted
to a Fermi-liquid analysis of the effects of correlations on
electron-phonon interactions and to a mean-field solution
of the Hubbard-Holstein model within the slave-boson
formalism. Section 4 presents a nonperturbative Dynamical
Mean-Field Theory study of the Hubbard-Holstein model.
Section 5 is dedicated to the charge instabilities of the model.
Section 6 briefly compares the Hubbard-Holstein model
with a three-band model with Jahn-Teller interactions intro-
duced for the fullerenes. Section 7 presents our conclusions.

2. The Model

The simplest model of a strongly correlated electron system
coupled to the lattice is given by the single-band Hubbard-
Holstein (HH) model. In this work, the HH model is not
used as a microscopic model for the cuprates, but rather
as an idealized description of the competition between e-
ph interaction and e-e interaction. In physical terms, the
most crucial limitations is the local nature of the interactions.
We refer to previous literature for analyses of nonlocal e-ph
interactions [24–28]. Considering a single band is a reason-
able assumption for the cuprates, while in many materials the
multiband nature needs to be taken into account.

The single-band HH model reads

H = −t
∑

〈i, j〉,σ

(
c†iσ c jσ +H.c.

)

− μ0

∑

iσ

niσ +U
∑

i

ni↑ni↓

+ ω0

∑

i

a†i ai + g
∑

i,σ

(
a†i + ai

)
(niσ − 〈niσ〉),

(1)
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where 〈i, j〉 indicate nearest-neighbor sites. niσ = c†iσ ciσ is
the local electron density, which is coupled via g to the field
ai of a dispersionless phonon [23]. The relevant physical
parameters are the strength of the coulomb repulsion U , the
bare bandwidth W , the bare phonon frequency ω0, the bare
dimensionless electron-phonon coupling λ = 2g2/(ω0W),
the chemical potential and the details of the bandstructure
(e.g., inclusion of next-neighbor hopping). The chosen
expression for λ would coincide with the standard definition
(see, e.g., [29]) in the case of a band with a flat density of
states 1/W . The dimensionality of the system also plays a
major role. This multidimensional parameter space leads to
an extremely rich physics, and the number of paper devoted
to this simple model is countless. Various approaches have
been considered to solve the HH model in the presence
of strong correlations. Besides numerical techniques like
quantum Monte Carlo [26, 30–33], exact diagonalization
[34–39], and Dynamical Mean Field Theory (DMFT) [40–
50], Density-Matrix Renormalization Group [51, 52], (semi)
analytical approaches like slave bosons (SB) [53–57], large-N
expansions [58, 59], and variational approaches [24, 60–63]
including a modified Gutzwiller scheme [64–66], have been
useful to elucidate the renormalization of the e-ph coupling
in the presence of (strong) correlations.

Even if our focus will be the strongly correlated HH
model, we will discuss its results in comparison with some
related models, like the Hubbard-tJ model, the three-band
Hubbard model for the cuprates and a three-orbital Hubbard
model with Jahn-Teller interactions for the doped fullerides.
Our investigation will be mainly dedicated to the effects
of e-ph interaction on the self-energy and the quasiparticle
renormalization factor z starting from a strongly correlated
regime, in which the Coulomb interactions puts the system
close to a Mott insulating phase. This is realized for large
values of U/W and for an half-filled or weakly doped band.
Since the study of superconductivity within DMFT (our
main tool of investigation) is limited to s-wave symmetry,
we will not discuss superconductivity in the HH model
which is expected to be d-wave if (repulsive) correlation
dominates (specifically when the model can be mapped into
a t-J model plus phonons). On the other hand we will
study s-wave superconductivity in a three-orbital model for
fullerides which emphasizes the role of the symmetry of e-ph
interaction in presence of correlations.

3. Effect of Electron-Phonon Interaction
in a Correlated Metal

3.1. Fermi-Liquid Analysis. In this section, we begin our
analysis of the properties of e-ph interaction in a correlated
metal within a Landau Fermi-liquid (FL) picture [29, 67].
Within this approach, the correlated metal is described as
a collection of quasiparticles with an effective mass m∗

instead of the physical electron mass m. In the presence of
strong e-e correlations the motion of the carriers is naturally
obstacled by the interactions, which is reflected in a large
ratio between the effective mass and the bare mass m∗/m�
1 and in a loss of low-energy spectral weight described by
a small quasiparticle renormalization factor ze. The former

reflects in an enhanced quasiparticle density of states N∗ =
m∗/mN0 (N0 being the bare density of states) and the latter
renormalizes the quasiparticle interactions.

In order to characterize the fate of the e-ph interaction
in a similar correlated metal, we need to consider also the
vertex corrections introduced by e-e interactions, for which
no Migdal theorem can be invoked.

We can gain a first insight on the way in which the e-
ph interaction behaves in the presence of strong correlations
by considering the effective dimensionless e-e interaction
mediated by the exchange of a single-phonon

N∗Γph
eff

(
q,ω

) = N∗g2ze
2Λe

2(q,ω
) 2ω

(
q
)

ω2 − ω2
(
q
) . (2)

By assuming that all the correlation effects are local, or
equivalently that the self-energy is independent on momen-
tum, the effective mass is related to ze by ze = m/m∗. In
(2) Λe includes the vertex corrections which renormalizes
the e-ph vertex, and the last factor is the free phonon
propagator. In order to focus on the effect of correlations
on the phononmediated interaction, in both ze and Λe we
include only processes due to e-e interactions, as reminded
by the index “e” that we attached to them.

Within a Landau Fermi-liquid picture we can use the
Ward identities that connect the vertex corrections Λ with
the wavefunction renormalization z. In the small frequency
(ω) and transferred momentum (q) regimes, these identities
have two distinct forms depending on the order of theω → 0
and q → 0 limits. In the case of the charge-density vertex,
which is relevant for our Holstein coupling, we have

zeΛe
(
ω −→ 0, q = 0

) = 1,

zeΛe
(
ω = 0, q −→ 0

) = 1
1 + Fs0

,
(3)

where Fs0 is the symmetric Landau parameter. Equation (3)
are exact Ward identities, which are satisfied irrespective
of the details of the e-e interactions and show the drastic
difference between the dynamic [(ω → 0, q = 0)] and static
[(ω = 0, q → 0)] limits.

Plugging these results into (2) we obtain, in the two limits
considered above

N∗Γph
eff

(
ω −→ 0, q = 0

) = −2g2N∗

ω0
,

N∗Γph
eff

(
ω = 0, q −→ 0

) = −2g2N∗

ω0

1
[
1 + (Fs0)e

]2

= −2g2

ω0

κe2

N∗ ,

(4)

where κe = N∗/[1 + (Fs0)e] is the charge compressibility in
the absence of e-ph coupling. The difference between the
dynamic and static case can be dramatic in the case of a
Fermi liquid with a large mass enhancement m∗/m � 1,
and small compressibility renormalization (κe ∼ N0). This
requires (Fs0)e to be much larger than one and proportional
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to the quasiparticle density of states N∗ = (m∗/m)N0 � N0.
Equation (4) then lead to

N∗Γph
eff

(
ω −→ 0, q = 0

) = −λ
(
m∗

m

)
,

N∗Γph
eff

(
ω = 0, q −→ 0

) = −λ
(
m

m∗

)
,

(5)

so that the effective one-phonon mediated e-e interaction is
large (∼ m∗/m) in the dynamic limit and small (∼ m/m∗) in
the static one. We emphasize that the key condition for the
equalities (5) to hold is that κe 
 m∗/m. Therefore, they are
verified also for a modest mass enhancement as long as the
compressibility remains much smaller than it (cf. (4)).

The strong ω − q dependence in (5) has been demon-
strated on really general grounds only in the small-q and
small-ω limits, whereas the case of finite q’s and ω’s needs
(approximate) analyses of specific models. The cases of the
single-band and of the three-band Hubbard models with
infinite local repulsion have been extensively considered in
the literature as prototypical models of strong correlations.
In this framework the issue of e-ph coupling has been
considered by means of the Holstein [45, 53, 54, 58, 66]
or (less frequently) of the so-called Su-Schrieffer-Heeger
coupling (where phonons couple to the electron hopping
term) [68, 69].

Results for these models show that the product zΛ
remains of order one in the dynamical regime as long as
the momentum and frequency lie outside the particle-hole
continuum, while it is strongly suppressed (as in the static
limit) inside the particle-hole continuum, where important
screening processes take place. Moreover, strong correlations
provide further suppression of the e-ph coupling when,
within the static limit ω = 0, the transferred momentum is
increased [58]. These additional screening channels depend
on the details of the electronic band structure determining
particle-hole screening processes.

The general Fermi liquid discussion and the specific
analysis of models with strong correlations generically
demonstrates the relevant role of dynamics in the screening
effects that e-e correlations induce on the e-ph coupling. This
strong dependence of the e-ph vertex on momentum and
frequency (and on their ratio) makes the effects of the e-
ph coupling rather subtle, since different physical quantities,
involving different dynamical regimes, may display more
or less suppressed e-ph effects. In particular the e-ph
coupling (and the e-e interaction mediated by phonons)
will be depressed by strong e-e interactions whenever small
energy and large momentum transfer are involved (e.g.,
in transport). This suppression may be substantial, for
instance, in the low-doping region of the superconducting
cuprates, where e-e correlations are strong due to the
relative proximity to a correlation-induced insulating phase.
On the other hand different physical processes involving
dynamical processes could experience a more pronounced
e-ph coupling. Specific calculations carried out in a single-
band Hubbard-Holstein model within a large-N treatment
of the e-e correlations [58, 59] find that the Eliashberg
spectral function α2F(ω) determining superconductivity is

much less reduced than the analogous quantity α2Ftr(ω)
determining transport properties. As we will discuss in the
following section, this different renormalization will found a
counterpart in nonperturbative dynamical mean-field theory
calculations.

Even if our focus is on the Hubbard-Holstein model, it
can be useful to recall that in the case of phonons coupled to
the electron current, Ward identities similar to those of (3)
can be derived [67]

zΛα
(
ω −→ 0, q = 0

) = Jqα,

zΛα
(
ω = 0, q −→ 0

) = vqα,
(6)

where Λα is the αth component of the electronic vector
vertex part. vqα and Jqα are instead the αth components of
the quasiparticle velocity and of the current, respectively.
Similarly to the case of a coupling with the density, the
correlations suppress much more strongly the e-ph coupling
in the static limit, while they affect little the coupling in
the dynamical case (remember that the current is weakly
touched by interactions and it even remains constant in
translationally invariant systems).

3.2. The Hubbard-Holstein Model: Mean-Field Slave-Boson
Approaches. A natural tool to address the screening effects
beyond the small-q and small-ω regime are mean-field
approaches based on a slave-boson representation of the
Hilbert space. These methods, although approximate, cap-
ture the main physical ingredients of the problem with a
description of a Fermi liquid of quasiparticles coupled by a
residual interaction. This is why we briefly summarize here
some results obtained [54] in the simplest formulation of
the slave-boson large-N approach to the infinite-U Hubbard
model. Here one can reach a semiquantitative understanding
of the effects of correlations on the e-ph coupling, which
are in substantial agreement with the results of more
sophisticated approaches.

In this discussion we will consider the infinite-repulsion
limit, which simplifies the formalism. In this limit we have a
sharp constraint of no double occupancy on each lattice site∑

σ niσ ≤ 1. The standard slave-boson technique implements
the constraint [70–76] by performing the usual substitution
c†iσ → f †iσ bi, ciσ → b†i fiσ , where the fermionic fiσ operators
represent quasiparticles, while the bosonic field bi labels the
state of a site with no fermions in it. This formulation of slave
bosons is here used in connection with a large-N expansion
[71] in order to introduce a small parameter allowing for a
systematic perturbative expansion without any assumption
on the smallness of any physical quantity. Within the large-N
scheme, the spin index runs from 1 to N and the constraint
assumes the form

∑
σ c
†
iσ ciσ +b†i bi = N/2. A suitable rescaling

of the hopping amplitudes ti j → ti j /N must, in this model,
be joined by the similar rescaling of the e-ph coupling
g → g/

√
N in order to compensate for the presence of

N fermionic degrees of freedom. It is beyond the scope of
this paper to report the technical details of this technique,
which have been extensively presented in previous works
[54]. Here we simply remind that the leading order in the
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large-N expansion provides a mean-field description of the
infinite-U Hubbard model with uniform constant values of
the bosonic field bi ≡ b0 and of the Lagrange multiplier field
implementing (on the average) the no-double-occupancy
constraint. This gives rise to an insulating phase at half-
filling (n = 1, doping δ = 0) and a Fermi liquid metallic
phase at finite doping with small quasiparticle residue z =
b2

0 = δ and large mass m∗ = 1/zm. The treatment of the
fluctuations at the next leading order beyond mean-field
introduces residual interactions between the quasiparticles
and allows to determine the scattering amplitudes in the
particle-particle (Cooper) channel ΓC(k, k′; q,ω) and in the
particle-hole channel Γ(k, k′; q,ω). Taking the small-(q,ω)
limits in this latter quantity also allows to determine the
Landau parameter within the large-N expansion. Setting
N = 2 we obtain

Fs0 = 2N∗Γω = N∗(−2εkF − λW
)
. (7)

Here εkF ≡ −2t(cos kFx + cos kFy) + 4t′ cos(kFx) cos(kFy) is
the bare electron dispersion calculated at the Fermi energy.
As we already noted, Fs0 enters in the FL expression of the
compressibility. When Fs0 < −1 the thermodynamic stability
condition κ > 0 is violated and the system undergoes
phase separation. We will discuss this issue in Section 6. We
anticipate that, in the phase separated region, long-range
Coulombic forces play a crucial role. It is indeed natural that
a long-range interaction frustrates the formation of charge-
rich regions. The outcome of this competition is, as we
will see, a shift of the charge instability to finite momenta
promoting the formation of a charge-density-wave phase. In
this section we will consider parameters far from the phase
separation instability. Nonetheless, in light of the central
role played by long-range interactions in the phase separated
case, we will also comment about their effect in these stable
regions of parameters.

3.2.1. Static Properties. In the SB large-N approach, the
fluctuations of the bosonic fields mediate the residual
interaction between the quasiparticles. If one only considers
the fluctuations of the b and λ fields, then only the effects of
the electronic Hubbard repulsion are described and one can
accordingly discuss the effect of the pure electronic screening
processes on the e-ph vertex. For the specific model that we
here briefly discuss, Figure 1 reports the Feynman-diagram
representation of the electronic processes (schematized
by the dashed line of the bosonic propagators) dressing
the bare (empty dot) e-ph vertex. The ratio between the
resulting screened e-ph vertex and the bare e-ph coupling
g is reported in Figure 2 both in the absence (dotted curve)
and in the presence (solid curve) of a long-range Coulomb
repulsion. In this latter case the strength is chosen to produce
a repulsion of about 0.1 eV between electrons in nearest-
neighbor cells. In both cases there is a strong reduction of
the static e-ph coupling. In the short-range case the residual
coupling is strongest at small momenta and it decreases as
the momentum.

= +

Figure 1: Leading-order in 1/N diagrammatic structure of the
effective e-ph vertex dressed by electronic processes only: the dashed
line is the slave-boson propagator only involving b and λ bosons
(pure e-e interaction), the solid dot is the dressed e-ph vertex,
the open dots are the bare e-ph vertices and the grey dots are the
quasiparticle-slave-boson vertices.
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Figure 2: Static effective e-ph vertex in units of the bare e-ph
coupling g as a function of the transferred momentum (in units of
the inverse lattice spacing 1/a) in the (1, 0) direction. The vertex is
calculated at leading order in 1/N for a HH model with t = 0.5 eV,
t′ = −(1/6)t, ω0 = 0.04 eV and doping x = 0.205. The dotted line is
in the absence of long-range Coulomb forces (VC = 0); the solid line
is in the presence of long-range Coulomb forces with VC = 0.55 eV
(adapted from [54]).

On the other hand, as it is natural, the long-range pote-
ntial screens out the long-range charge fluctuations thereby
driving to zero the e-ph coupling at low momenta.

These findings can be obtained and confirmed with
several different approaches. In particular, they reproduce
exactly the results of large-N calculations with Hubbard
projectors instead of SB’s [58, 59], and are in good agree-
ment with calculations based on the flow-equation method
[77] and recent Gutzwiller+RPA calculations at finite (but
large) U [66]. They also agree qualitatively QMC analysis
[33] (although some differences are present, which can be
attributed to the fact that QMC calculations are performed
at finite temperature and at finite Matsubara frequencies) (cf.
[66, Figures 11 and 12]).

All these results show that e-ph scattering at large
momenta is typically weaker than scattering at low momenta
in the presence of short range forces only (which is the
case of metallic phases far from phase separation charge
instabilities, where, on the contrary, long-range interactions
start to play a crucial role). This can be of obvious
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relevance when the relative importance of e-ph couplings
between the quasiparticles and specific phononic modes is
considered [78]. Indeed it might well happen that in the
presence of strong correlations modes that would be strongly
coupled, but would exchange preferably large momenta, are
more severely screened than other modes exchanging lower
momenta. All this surely deserves a specific analysis.

3.2.2. Dynamical Properties. The previous subsection was
focused on the screening of the static e-ph coupling by elec-
tronic processes. However the Fermi-liquid analysis carried
out in Section 3.2 pointed out the great difference between
screening processes in the static and in the dynamical
regimes. While the Fermi liquid analysis was only able to
provide definite statement in the small-(q,ω) regime, within
the SB large-N approach we can investigate the role of
dynamics in the screening processes beyond this limit.

Figure 3 displays the behavior of the effective e-ph vertex
(again normalized to the bare g) as a function of Matsubara
frequencies for two distinct momenta in the (1,0) direction
for our HH model in the infinite-U limit. In panel (a) a
small momentum q = (0.2, 0) (again unit lattice spacing is
used here) is reported, while panel (b) shows the behavior
at a larger momentum q = (2.0, 0). Clearly in the former
case the e-ph coupling rapidly returns to its bare value, at
Matsubara frequencies larger than ∼ vF|q|. The vF|q| scale
is instead much larger in panel (b), where the effective e-ph
vertex stays small over a much broader frequency range. This
fully parallels the low-frequency and low-momentum limits
discussed in Section 3.1.

Again this result is not specific of this single-band model
(or of its treatment) and it has been confirmed by the analysis
of a three-band Hubbard model for the cuprate CuO2

planes with infinite repulsion on copper orbitals [53]. In this
case, one can even notice in the small-momentum case an
enhancement of the effective e-ph coupling above its bare
value [79]. This is an overscreening effect due to interband
processes. In any case, again one finds that low-momentum
processes generically lead to larger e-ph couplings.

4. Strong-Coupling Regime and Polaron
Formation in a Correlated Metal

4.1. Proximity to a Paramagnetic Mott Insulator. In this
section we extend our analysis beyond the mean-field
level and discuss the fate of the e-ph interaction in a
correlated metal under the sole assumption that the physics
is governed by the Hubbard repulsion close to a Mott-
Hubbard transition, without assuming a weak e-ph coupling,
and/or any approximation as far as the adiabatic ratio is
concerned. This means that we need a theoretical approach
able to treat several energy scales simultaneously, without
assuming that any of them is negligible or perturbative. A
natural candidate for this purpose is the Dynamical Mean-
Field Theory (DMFT) [80], which treats all local interaction
terms (such as both the Hubbard and the Holstein couplings)
and the hopping term on the same footing and it is
equally suitable to treat any parameter regime. Moreover, the
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Figure 3: Effective e-ph vertex in units of the bare e-ph coupling as
a function of the Matsubara frequency in the HH model at leading
order in 1/N . The parameters are the same as in Figure 2. Panel (a)
is for a small transferred momentum q = (0.2, 0) (in units of inverse
lattice spacing 1/a); (b) is for a sizable transferred momentum q =
(2.0, 0) (after [54]).

method provides unbiased information about the dynamical
properties.

The central approximation behind DMFT is the locality
of the self-energy (both the electronic and the phononic
contributions), a condition which becomes exact when the
coordination number becomes large. The original lattice
enters in the calculation only through the density of states,
which we always choose to be a semicircular one of half-
bandwidth D (Obviously W = 2D). This approximation is
appropriate for a model with local interactions such as our
Hubbard-Holstein model, even if it does not allow to treat
phases with nonlocal correlations such as intersite bipolarons
[81] or d-wave superconductivity, which requires cluster
extensions of DMFT. Even though these limitations imply
that the approach can miss some important physics of the
cuprates, our results provide valuable information about
the interplay between e-e and e-ph interaction beyond any
perturbative limit.

DMFT allowed to obtain a complete characterization of
the Mott-Hubbard transition in the pure Hubbard model,
and the emerging physical picture is able to explain several
properties of correlated oxides. While we refer to original
papers [80] for details, we recall here some aspects which are
relevant to our discussion.

We first consider the half-filled system and, in order to
focus on pure correlation effects, we consider a paramagnetic
phase. In this regime, for large repulsion, the ground state
of the HH model can become a “Mott” insulator, in which
the electrons are localized because the electron motion is
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energetically unfavorable. Starting from the uncorrelated
systems and increasing the correlation strength U , the
spectral weight is transferred from low to high frequency. In
this process the spectral function evolves from a single band
to a three-feature structure in which a renormalized band
survives around the chemical potential, while precursors of
the Hubbard bands develop around ω ∼ ±U/2. As the cor-
relation is further increased up to a value U ≡ Uc2 � 1.5W
the quasiparticle band disappears, and the system becomes
a Mott insulator with a preformed Hubbard gap. The key
parameter that controls this Mott-Hubbard transition from
a metal to an insulator is the quasiparticle weight z, which is
directly computed from the self-energy (which is a natural
outcome of a DMFT calculation). z measures the width
and the total spectral weight of the low-energy quasiparticle
peak, and its vanishing pinpoints the Mott transition. As
soon as the system is doped away from half-filling the
system is metallic regardless the value of U . The chemical
potential remains within the quasiparticle peak which moves
towards one of the bands, but it is still well defined for a
sizable doping region (dependent on the value of U and on
details of the bandstructure) [80]. Due to the momentum
independence of the self-energy, also in DMFT we have that
z = m/m∗, so that the Mott transition is associated with a
divergent effective mass of the renormalized carriers.

In the following part, we discuss the effect of a
nonperturbative electron-phonon coupling in the strongly
correlated metallic solution, that is, a system in which a
quasiparticle peak at the Fermi level is separated from
the Hubbard bands realizing a separation of energy scale.
Starting from this situation, in which the quasiparticle
bandwidth is z times the bare width W , the effect of the e-
ph coupling is far from trivial. Indeed, there are two main
effects associated to e-ph interaction.

(i) The e-ph interaction can introduce a further quasi-
particle renormalization, associated to the increase of
the quasiparticle effective mass, which may eventually
lead to polaronic effects for very strong coupling.
This effect leads to a decrease of z. In weak coupling
we have 1/z = 1 + (π/2)λ at half-filling and a
semicircular density of states of half width D.

(ii) The e-ph interaction mediates an attractive density-
density interaction (the density-density form is spe-
cific for a Holstein coupling), which directly contrasts
the Hubbard repulsion. If we integrate out the
phonon degrees of freedom, the fermions interact
through a dynamical (retarded) interaction [82]

Ueff(ω) = U − 2g2ω0

ω2
0 − ω2

. (8)

In the antiadiabatic regime the frequency dependence
of the second term can be neglected and overall
interaction is a static term Ustat = U − λW , in
which the e-ph interaction reduces the strength of the
Hubbard term. When the phonon frequency becomes
finite the interaction is retarded, but we still expect a
similar effect. If we assume that the repulsion is the

largest scale, the leading effect of e-ph interaction is
to reduce the effective repulsion, making the system
less correlated and increasing z.

The balance between this two effects is not generic and
it depends on the adiabatic ratio and on the precise value
of the interactions. Yet, important conclusions can be drawn
in the correlated regime, in which, also in the presence of e-
ph interaction, the separation of energy scales determined by
correlations survives. In this regard, it is important to recall
that, within DMFT, the quasiparticle weight is associated to a
Kondo resonance of an Anderson-Holstein impurity model.
Assuming that the Hubbard U is the largest scale of the
problem, the Kondo coupling can be calculated in terms of
virtual processes acting in the subspace in which the impurity
is singly occupied obtaining an effective Hamiltonian for spin
fluctuations [83]. The result is given by

JK (λ) = JK (0)
∞∑

m=0

∣∣∣
〈

0
∣∣∣eg/ω0(a−a†)

∣∣∣ m
〉∣∣∣

2

1− 2g2/ω0U + 2mω0/U
, (9)

where the Kondo coupling in the absence of phonon is given
by JK (0) = 16V 2/U , |m〉 is the state with m phonons, and V
is the hybridization between the impurity and the bath. After
some algebra, and introducing

Ueff = U − ηλW , (10)

we can write, for small λW/U

JK (λ) � JK (0)
(

1 + η
λW

U

)
� 16V 2

Ueff
= 16V 2

U − ηλW (11)

with

η = 2ω0/U

1 + 2ω0/U
. (12)

This result would imply that the complicated interplay
between the static Coulomb repulsion and the retarded e-
ph coupling may be effectively described by an effective
purely electronic Hubbard model with a reduced repulsion.
We notice in passing that this calculation for the Anderson
impurity model is analogous to the evaluation of the
effect of phonons on the superexchange coupling of [84].
Interestingly the phonon dynamics only enters through the
ratio ω0/U , which can be considered as typically small
because U is by choice the largest scale of the problem, and
ω0 is smaller than the hopping scale. In the relevant regime
of small ω0/U , we have Ueff = U − 4g2/U .

These results can be tested through a DMFT solution
of the Hubbard-Holstein model. We start our discussion
from half-filling, where the separation of energy scales
characteristic of correlated systems is clearer and more solid.
We first computed the quasiparticle weight z(λ) = (1 −
∂Σ(ω)/∂ω)−1 for finite fixed U as a function of λ.

In Figure 4, we show the ratio z(λ)/z(0), in order to
emphasize the phonon contribution to the quasiparticle
weight. It is apparent that the value ofU determines different
regimes. For small U , the e-ph interaction reduces z (i.e.,
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Figure 4: Effect of the electron-phonon interaction on the quasi-
particle weight z in the presence of electron-electron interaction of
different strengths. The quantity plotted as a function of λ is the
ratio between the full z and the value of the Hubbard model without
e-ph coupling (z(0)) (after Sangiovanni et al. [45]).

increases the effective mass) as expected in weakly interacting
systems. Increasing U , we approach an opposite behavior in
which the e-ph interaction makes the quasiparticles lighter
(even if they are obviously heavier than free particles because
of the stronger renormalization determined by correlation,
which is hidden in z(0)). The effect becomes particularly
strong at U = 1.45W , which is very close to the Mott
transition. Here even small variations of the effective U can
induce sizable variations in the effective mass. Obviously
such sensitivity is enhanced in the present half-filling case,
where an actual Mott transition can take place.

This behavior confirms that, when the e-e correlation
dominates, the leading effect of the e-ph interaction is
a reduction of the effective U , resulting in an increased
quasiparticle mobility. We can now test the above prediction
of an effective static repulsion including the effects of e-ph
interaction as far as the low-energy physics is concerned.

Assuming a form Ueff = U − ηλW for such an effective
interaction, we obtained η for several values of U and ω0

simply determining the value of U which gives, for a pure
Hubbard model, the same z we obtain for the Hubbard-
Holstein model. The results are summarized in Figure 5, and
confirm that η is essentially a function of ω0/U which starts
off linear at small values of the argument before bending
for larger values. The numerical value well reproduces (12)
derived on the basis of the analogy with Kondo effect without
fitting parameters. Obviously physically relevant frequencies
are in the small ω0/U range.

On the basis of our knowledge about the DMFT results
for the pure Hubbard model, the quasiparticle weight
completely characterizes the low-energy quasiparticle peak.
Therefore, our analysis should imply that the low-energy
part of the spectral function of our Hubbard-Holstein model
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Figure 5: Effective static electron-electron interaction for the low-
energy properties of the Hubbard-Holstein model. The picture
shows the coefficient η in Ueff = U − ηλW as a function of ω0/U
(after Sangiovanni et al. [45]).

can be described by means of the effective Hubbard model
that we introduced. This is strikingly confirmed by a direct
comparison, as shown in Figure 6. Here we show some exam-
ples of momentum integrated spectral functions ρ(ω) =
−1/πG(ω) for the Hubbard-Holstein model compared with
the associated effective Hubbard model with the proper η.
Besides the spectacular confirmation of the validity of the
effective model for the low-energy part of the spectrum (the
quasiparticle peak), another important information emerges
from the picture: The high-energy part of the spectrum is
instead affected by phonons in a more “dynamical” way,
meaning that the high-energy Hubbard bands acquire a
modulation in frequency which can be related to phonon
satellites, which are completely absent in the low-energy
part, where nothing happens at the characteristic phonon
frequency.

The picture that emerges for the half-filled model can
be summarized as follows: Quasiparticle motion arises from
virtual processes in which doubly occupied sites are created.
Obviously, these processes are not so frequent, since the
energy scale involved is large, but they are extremely rapid
(the associated time scale is ∝ 1/U), and consequently are
poorly affected by phonon excitations with a characteristic
time scale 1/ω0 � 1/U . When the phonon frequency is small
with respect to U , the phonon degrees are frozen during
the virtual excitation processes. Therefore, despite the overall
electron motion is quite slow due to the small number of
virtual processes (which is reflected by the large effective
mass), the e-ph interaction has no major effect except for a
slight reduction of the total static repulsion.

According to what we have just described, we can
conclude that strong correlations reduce the effect of the e-
ph interaction on the low-energy properties, associated to
quasiparticle propagation, while the high-energy properties
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Figure 6: Comparison between the DMFT momentum-integrated
spectral function ρ(ω) = −1/π ImG(ω) (G(ω) being the local
Green’s function) for the Hubbard-Holstein model (dotted line)
and the effective purely electronic Hubbard model with U =
Ueff (solid line). The low-energy part of the spectra is perfectly
reproduced by the effective model, while the high-energy features
present phononic signatures that cannot be plugged in an effective
static interaction (after Sangiovanni et al. [45]).

present more standard phonon signatures, such as the
satellites at the phononfrequency scale.

It has to be underlined that DMFT is not able to int-
roduce momentum-dependent corrections to the electronic
properties. The above analysis therefore, shows indeed
that the “standard” electron-phonon interaction is heavily
screened (and it actually loses its dynamical nature) when
the low-energy quasiparticle properties are considered. Only
“nonstandard” effects, such as the prevalence of forward
scattering that we discussed in Section 3.1 can survive at low
energy.

The above scenario has been carried out at half-filling,
where the presence of e-e correlations has its most striking
effects, both in terms of the phase diagram, as it can give rise
to a Mott transition, and in terms of the separation of energy
scales, which is clearly sharper than for doped systems.
Therefore, as soon as we dope the Hubbard-Holstein model,
even for U > λ the dominance of repulsive correlations is
weaker and the interplay with e-ph coupling will be more
subtle [46]. As a result, it is not possible to describe the
effect of phonons on the highly correlated metal in terms
of an effective static potential unless the system is very
close to the antiadiabatic limit. Therefore, for small and
intermediate phonon frequencies, we do not find situations

in which increasing the electron-phonon coupling reduces
the effective mass.

Nonetheless, if we consider reasonably large values of
U , the dominance of correlations will determine a reduce
effectiveness of the e-ph coupling, and, for example, polaron
formation will be pushed to significantly larger values of
λ then for uncorrelated systems, as shown by the DMFT
results of Figure 7. Here we plot m∗/m = 1/z as a function
of λ and we compare the uncorrelated system with the
system with U/W = 2.5 (Here, since the density is different
from half-filling, the system is always metallic even if U
is larger than the critical value for the Mott transition).
While in the uncorrelated casem∗ grows exponentially when
λ approaches a critical value of order 1 for all densities,
signaling polaron formation, the correlated system displays
a significantly weaker growth of m∗ up to λ � 0.5÷ 0.75.

The role of the adiabatic ratio is illustrated by Figure 8,
where we report the renormalization of the linear coef-
ficient of the mass enhancement defined by the relation
m∗(U)/m∗(U , λ) = 1 + rλ. Here m∗(U , λ) is the effective
mass in the presence of both electron-electron and electron-
phonon interactions and m∗(U) is the same quantity in
the absence of coupling to the phonons. Here a negative
r implies a standard increase of the effective mass due to
phonons. The results (again for U/W = 2.5) show that in
all cases the coefficient is smaller than one, confirming that
correlations reduce the effective e-ph coupling, and a strong
(and nonmonotonic) dependence on the antiadiabatic ratio.
Only for very large values of ω0/Wr becomes positive
reflecting that the “screening” physics we described above
is effective. The dependence on the density naturally reflects
that fillings closer to n = 1 display weaker phononic effects
in the adiabatic regime of small frequencies and a more rapid
evolution to an antiadiabatic regime in which r > 0.

The scenario which emerges from DMFT calculations at
finite U/W can be confirmed by a semianalytical approach
based on an extension of the Gutzwiller approach which
treats phonon degrees of freedom on the same footing of
the electrons. For more details see [64, 65]. The results of
Figure 9 in the limit of infinite repulsion and for finite doping
δ = n − 1 confirm the scenario arising from Figure 7: in the
doped correlated system the electron-phonon interaction is
considerably reduced with respect to the free system, but the
qualitative effect of λ is an increase of the effective mass.

4.2. Antiferromagnetic Correlations. The above analysis sug-
gests that, as expected, strong e-e correlation essentially
opposes to e-ph coupling, even though “anomalous” sig-
natures of e-ph coupling still survive even in regions of
parameters for which correlations prevail. Yet, these results
are limited to the metallic paramagnetic state, in which
no broken symmetry is allowed. At half-filling and for
some finite doping region, strong correlations lead to an
antiferromagnetically ordered state, and it is expected that
finite-range antiferromagnetic correlations survive in a wider
doping region. The relation between antiferromagnetism
and e-ph interaction is hinted by the experimental frame-
work. Indications of phonon signatures in high-Tc super-
conductors are indeed particularly strong in the extremely
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Figure 7: Effective mass m∗ = 1/zm as a function of λ for three different densities different from half-filling (n = 0, 5, 0.7, 0.9) in the
uncorrelated (a) and strongly correlated (U = 2.5W , (b)) system (after Sangiovanni et al. [46]).
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underdoped region, where some kind of antiferromagnetic
correlation is certainly present. For example, clear polaronic
features are observed in the optical spectroscopy [85] and
ARPES [7] of underdoped materials.

From a theoretical point of view, several investigations
indeed suggest that the e-ph interaction is particularly
effective for a hole in an antiferromagnetic background [86–
91], and for slightly doped t-J models. These results can
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Figure 9: Renormalization of the effective mass due to electron-
phonon coupling for infinite U and ω0/W = 0.1 as a function of
λ for different doping levels. The inset shows the same data in a
smaller range. Here the doping δ is given by δ = n−1 and λ is twice
as in the rest of the paper (after Barone et al. [64]).

be reconciled with the above findings for the nonmagnetic
phase by simple arguments.

As we discussed in the previous sections, in the paramag-
netic phase the effect of increasing correlations is a strong
reduction of the quasiparticle weight z associated with a
divergent self-energy, which in turn strongly renormalizes
the e-ph vertex, leading to the strong reduction of low-
energy phononic signatures that we described above. Once
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antiferromagnetic correlations are allowed, the system can
turn insulating even with a finite z and a nondivergent self-
energy, hence the e-ph vertex is not severely screened [92].
From a more physical point of view, the antiferromagnetic
insulator allows for more charge fluctuations with respect to
the pure Mott state at the same value of U . Therefore, a Hol-
stein coupling, which exploits precisely charge fluctuations
to gain energy, is expected to be favored by antiferromagnetic
correlations.

Direct DMFT calculations in the antiferromagnetic phase
at half-filling confirm these expectations [92]. In Figure 10
we show the quantity [z/z(0) − 1]/λ for small λ (z(0) being
z in the absence of e-ph interaction). This quantity measures
the renormalizaton of the linear e-ph coupling induced by
e-e correlations. The comparison between the paramag-
netic solution and the antiferromagnetic state confirms the
above expectations. While this coefficient rapidly drops as
a function of U in the paramagnetic state, the inclusion
of antiferromagnetism leads to a much more robust e-ph
coupling. We underline that, however, the e-ph interaction is
still substantially reduced with respect to the noninteracting
systems [92].

The comparison with the uncorrelated system is shown
in Figure 11, where the evolution of z as a function of λ
is followed beyond the perturbative regime. In all cases z
decreases monotonically, and a crossover from a metallic
state to a polaronic one occurs. Yet, the decrease is more
rapid for the uncorrelated system, and the characteristic
coupling for polaron formation is significantly enhanced in
the correlated antiferromagnetic state.
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Figure 11: Quasiparticle renormalization as a function of λ for
different values of U and ω0 = 0.0125W . The value of λ at
which polaron formation occurs is only moderately increased
by correlations with respect to the noninteracting case (after
Sangiovanni et al. [92]).

The above discussion has been limited to half-filling.
It is worth to briefly discuss the effect of doping in the
antiferromagnetic state. In Figure 12 we present z as a
function of λ for different densities, which imply different
values of the staggered magnetization m = 〈∑i(−1)i(ni↑ −
ni↓). Notice that, within DMFT, the AFM state completely
disappears only at n � 0.84. It is evident from the plots of
Figure 12 that the reduction of the staggered magnetization
reduces also the effect of the electron-phonon interaction.
When the magnetization is small or vanishing, z becomes
essentially independent on z for a wide range of values,
signaling the screening of the e-ph interaction.

5. Phonon Mediated Charge Instabilities

In the previous sections we focused on the metallic phases,
without discussing the possible instabilities, either directly
driven by the interaction terms, or favored by the weakness
of the correlated metallic state. One can indeed expect,
on very general grounds, that the reduced kinetic energy
characteristic of the strongly correlated metal can be easily
overcome by different localizing effects thereby destabilizing
the metal in favor of ordered phases.

As we did in Section 3.1 in the discussion of the e-e
screening of the e-ph vertex, we can start our analysis in
a general FL framework before discussing in some more
details model-specific results. The charge compressibility κ =
∂n/∂μ, which in a FL theory reads [29, 67]

κ = N∗

1 + Fs0
, (13)

is the key quantity that controls the stability of the charge
degrees of freedom. A positive κ is the stability condition.
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Therefore, if Fs0 < −1 this condition is violated and the
system undergoes a charge instability towards a phase-
separated state.

It is important to stress that the results of Section 3.1
about the reduction of the static e-ph vertex do not neces-
sarily imply that e-ph effects do not contribute to the charge
compressibility in the presence of strong correlations. Indeed
Fs0 ≡ 2N∗Γω, where Γω is the full dynamic effective scattering
amplitude between the quasiparticles [67] including both e-
e and e-ph interactions. As opposed to its static counterpart,
the dynamic amplitude which enters Fs0 is not depressed by
the e-e vertex corrections. For example, at lowest order in g2

and by performing an infinite-order RPA resummation of the
e-ph screening processes, Fs0 reads

Fs0 = 2N∗
(
Γeω −

2g2

ω0

)
, (14)

where Γeω is the dynamic vertex function determined by e-
e correlation processes only. This equation indicates that a
sufficiently large bare g2 can overcome the effective residual
repulsion between the quasiparticles Γω leading to a phase
separation instability marked by the Pomeranchuk condition
Fs0 < −1. It is worth pointing out that m∗/m� 1 requires a
large bare repulsion between the physical electrons (a large
Hubbard U in our model) but this by no means requires a
large residual interaction between the heavy quasiparticles.
Therefore, even a small e-ph interaction can give rise to a
phase separation instability.

Moreover, near the instability condition Fs0 = −1, the
phonon contribution to the vertex becomes substantial and
the e-ph interaction becomes relevant even in the static
limit, at least at small q’s. At large q the analysis of specific
models shows that the e-e interaction mediated by phonons
is instead suppressed also near the instability region.

This is what indeed happens in the HH model treated
within the SB-large-N method described in Section 3.2.
Within this approach it was first demonstrated that a metal
with moderate e-ph coupling and strong e-e correlations
could undergo a charge instability [54, 93] Specifically in the
absence of long-range Coulombic forces the Pomeranchuk
stability condition is violated. The doped HH model does
not form a uniform phase and the system undergoes a phase
separation between hole-rich regions and insulating half-
filled regions (a phase separation instability was also found
in the three-band HH model [53]).

In the presence of long-range Coulomb interactions the
electrostatic cost of the charge-rich regions would become
infinite, and the thermodynamic phase separation cannot
take place. However, inhomogeneous charge-density wave
ordering can establish as a compromise between the charge
segregation tendency and the homogenizing effect of long-
range interactions. This mechanism for charge ordering
is the so-called “frustrated phase separation” [94–97]. For
the specific HH model described here it was found that
for realistic values of the e-ph coupling and of the long-
range repulsion, frustrated phase separation gives rise to a
second-order quantum phase transition (quantum critical
point, QCP) around optimal doping (doping x = 0.19)

[93] with the ordering and the periodicity influenced but
not directly related to the structure of the Fermi surface.
This instability arises instead from the energetic balance
between the tendency to phase separation and the frustrating
electrostatic cost of the long-range Coulomb interaction.
Near this instability the phonon spectrum becomes highly
anomalous. First of all the phonon acquires a strong coupling
to the electronic degrees of freedom near the instability
wavevector qc (which usually tend to occur at qc ≈ (±π/2, 0),
(0,±π/2) for the relevant dopings and Fermi-surface shapes
[54, 93]). Near the instability wavevector the phonon line-
width becomes therefore, very broad and it even acquires
a background of the order of the particle-hole continuum.
At the same time the phonon dispersion softens and at the
instability the frequency of this mixed phononelectron mode
vanishes. Remarkably, since the critical wavevector is not so
large (typically of the order of π/2) the region where the
phonon dispersion becomes strongly anomalous is rather
isotropic and substantial anomalies are present also in the
(1,1) direction upon approaching the critical doping of the
QCP. Figure 13 reports the anomalous phonon dispersion
found in the HH model in [54].

Of course it is quite tempting to relate these anomalies, to
the anomalies observed by inelastic neutron scattering [98–
104]. An alternative possibility can also be proposed for the
anomalies detected in underdoped cuprates: charge ordering
can give rise to rather anisotropic nearly one-dimensional
dynamical charge textures. In this case Kohn anomalies can
be expected along the stripes at wavevectors of the order 2kF
in the stripe direction [105, 106].

6. Jahn-Teller Coupling in the Fullerenes

All the above analysis has been carried out for the HH
model. It has to be emphasized that some of the effects we
discussed may be less general than what the simple form of
the Hamiltonian may suggest. As we discussed in details, the
HH model is indeed characterized by two interaction terms
which are both related to the charge degrees of freedom, and
they indeed directly compete, as clearly shown by (8). This
direct competition makes the two effects more exclusive than
in general situations in which the e-ph coupling does not
directly compete with the Coulomb repulsion. We can have
two different ways to avoid the direct competition: a different
functional form for the e-ph coupling in a single-band
model, or a Jahn-Teller coupling in a multiorbital model.

The first situation can obviously have relevance for the
cuprates, in which different phonon modes with specific
symmetries may play a role, or for system dominated
by the so-called Su-Schrieffer-Heeger coupling in which
the phonons modulate the nearest-neighbor hopping. The
second situation occurs instead in the fullerenes, where the
relevant conduction band is a three-fold degenerate manifold
of t1u (p-like) orbitals, which couple with Jahn-Teller active
local distortions of the fullerene molecule. It is precisely this
kind of coupling which is expected to be responsible for
superconductivity in these compounds [18].

A three-band model which includes a strong Coulomb
repulsion, a Hund’s rule splitting and a moderate Jahn-Teller
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e-ph coupling has been studied in several papers [22, 107–
109], reaching an a priori surprising conclusion: The Jahn-
Teller coupling is not harmed by large Coulomb repulsion,
and the phonondriven superconductivity can actually be
strongly enhanced in the proximity of the Mott transition,
that is, in the region in which the correlations are most
effective.

Here we do not discuss the physics of this model in
details, since we are mainly interested in contrasting its
behavior with the HH model. The key point is that the Jahn-
Teller interaction does not touch the total charge on each
molecule, as it couples with a combination of local spin and
orbital degrees of freedom [22]. As a consequence, even when
correlations are sufficiently strong to suppress the electronic
motion, the localized electrons can still interact within
a single fullerene molecule via the e-ph interaction. For
example, if we consider the experimentally relevant situation
of three electrons per fullerene molecule, as we approach the
Mott state three electrons will remain stuck on each fullerene.
Yet, the can still be in a high-spin state or low-spin state,
and the energetic gain associated to the multiplet splitting
will be the same as for a noninteracting molecule. Therefore,
the e-ph driven interaction will be not renormalized by
correlations, as opposed to the Holstein model. From a
Fermi-liquid point of view, the lack of renormalization is
determined by very large vertex corrections (divergent like
1/z as the Mott transition is approached) that compensate
the z factors [22, 109].

As a matter of fact, the effective interaction between
quasiparticles obtained in a nonperturbative DMFT study of
the model corresponds to a severely screened Hubbard repul-
sion plus an essentially unscreened phonondriven attraction
that can be parameterized as

Aeff = zU − 10
3
J , (15)

where J is the strength of the phononmediated attraction in
the spin/orbital channel. This simple equation shows that,
even if U is chosen to be significantly larger than J , when
the Mott transition is approached (i.e., z → 0) [107], the
attraction will eventually prevail. Moreover, in this regime
the quasiparticles are quite heavy, and their large effective
density of states can lead to an enhancement of the effective
dimensionless coupling, which is expected to reflect in an
enhanced critical temperature.

This enhancement is explicitly found by solving the
three-orbital model within DMFT in the s-wave supercon-
ducting phase. If we follow the evolution of the supercon-
ducting order parameter as a function of U for a fixed
small J we first have a standard BCS-like region when U
is so small that the bare attraction simply overcomes the
bare repulsion. Then superconductivity disappears because
U is large enough to kill the attraction, but z is still
close to 1. Further increasing U we approach the Mott
transition, z decreases and it strongly renormalizes down
the effective repulsion. Eventually the effective interaction
becomes attractive and superconductivity re-emerges, with
an order parameter that follows a bell-shaped curve before
vanishing at the Mott transition point [22, 107]. This

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Z

0 0.2 0.4 0.6 0.8 1

λ

n = 0.84 (m = 0)
n = 0.85 (m = 0.2)
n = 0.87 (m = 0.4)

n = 0.92 (m = 0.6)
n = 0.96 (m = 0.8)
n = 1 (m = 0.96)

Figure 12: Quasiparticle renormalization as a function of λ
for different values of the density n (and consequently different
magnetization m) at fixed U = 1.75W and ω0 = 0.0125W (after
Sangiovanni et al. [92]).

strongly correlated superconducting pocket displays a maxi-
mum critical temperature which exceeds the weak-coupling
BCS value. In other words, phonondriven superconductivity
is actually enhanced by strong correlations [22].

A full DMFT solution of the model has allowed both to
predict the experimental observation only later provided in
[20, 21], like the dome-behavior of the critical temperature as
a function of doping, and the first-order transition to a spin-
1/2 antiferromagnet when pressure is reduced to recover the
ambient phase of A15 Cs3C60, and to further characterize the
properties of strongly correlated superconductors. For exam-
ple, we predict a pseudogap in the photoemission spectra
[110, 111], and a kinetic-energy driven superconductivity for
the most expanded compounds [109].

In the context of this paper, our solution is a clear
example of the crucial role of the phonon symmetry. In
our multiband model it is possible to consider phonons
which are by symmetry unharmed by correlations, as
opposed to the Holstein model. The result is confirmed by
investigations of simplified two-orbital models which share
the same properties [110, 111] When we go back to the
cuprates, and to single-band models, our findings suggest
that phonon modes which are coupled to operators which
are not proportional to the charge can indeed survive much
better in a strongly correlated environment, in analogy with
the findings of mean-field methods.

7. Conclusions

The focus of the paper is on the effects of strong electron-
electron correlations on the electron-phonon coupling. We
mostly considered the Hubbard-Holstein model, where both
e-e and e-ph interactions locally couple to electron density
fluctuations. In this case the competition between these
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interactions is quite effective, particularly in the proximity
of the Mott-Hubbard transition.

In particular, we study strongly correlated metallic
phases, where the system is either at half-filling or at small
doping, and the correlation strength is large enough to put
the system close to a Mott-Hubbard transition. In these
conditions, since the e-e Hubbard repulsion makes the
density fluctuations stiffer, the Holstein e-ph coupling g is
generically suppressed, even if the overall picture is far from
trivial.

Along this paper we have discussed how this suppression
depends on exchanged momentum and frequency, and on
other physical parameters. A first observation is that the
suppression is strong whenever the quasiparticle residuum
z is small. On the contrary we observed that in the
antiferromagnetic phase, where the suppression of double
occupancy imposed by the large Hubbard repulsion U is
due to the spin ordering and does not entail a small z,
the e-ph coupling is only weakly suppressed. This easily
explains why polaronic features are present and clearly visible
in weakly doped antiferromagnetic cuprates. The weakness
of this suppression is likely to persist even in the metallic
paramagnetic regime, if substantial residual antiferromag-
netic correlations persist on a local basis. The opposite case
of a strong suppression of the e-ph coupling,occurring for
small z (or more precisely when κe/N∗ 
 1), needs further
specification. In particular we find that g is more or less
suppressed depending on the dynamical regime: for a small
ratio between the transferred frequencyω and the transferred
momentum vFq the e-ph coupling is strongly reduced, while
in the opposite limit ω/vFq � 1 no suppression is found
and even an enhancement is possible. This latter finding

leaves the possibility open of substantial phononic residual
attractions between the quasiparticles competing with the
residual repulsions in driving the system unstable toward
long-wavelength charge instabilities. These two dynamical
regimes are also visible in the DMFT approach where the
scale vFq is reflected in the width of the quasiparticle
resonance. For frequencies smaller than this latter scale
phononic features are absent, while they are clearly present
at high-energy in the Hubbard sidebands.

The nearly static case ω/vFq 
 1 again displays
an intrinsic richness as far as momentum dependence is
concerned: the strong suppression of g already occurring
at small momenta becomes really very strong at large
transferred momenta. This suppression found both on
general grounds within a Fermi-liquid analysis and within
specific fieldtheoretic treatments of the Hubbard-Holstein
model [53, 54, 58, 59, 77] can account for the impressive
elusiveness of phononic features in transport experiments in
cuprates. Indeed the fact that the resistivity in the metallic
phase does not display any clear phononrelated feature is
naturally explained by the strong suppression of the e-ph
coupling in transport processes, where very low-energy and
large transferred momenta are involved. Thus the strongly
correlated nature of the cuprates is the key ingredient to solve
the puzzles related to the dichotomous behavior of these
materials, which display clear phononic features in some
cases and none in others.

All the above findings are only partly peculiar of the spe-
cific HH model, where the electron density locally involves
both the e-e and e-ph coupling: The analysis of other models
like the Su-Schrieffer-Heeger [112] essentially produce the
same results [68, 69, 113]. A qualitative difference only
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occurs for those phonons which couple to degrees of freedom
which are not severely stiffened by the proximity to a Mott-
Hubbard phase. In this regard we reported the important
case of Jahn-Teller phonons in the Fullerenes. It would
be interesting to search for similar phononic (or even
nonphononic) degrees of freedom in the cuprates. In this
regard, the buckling modes in some cuprates are interesting
candidates, which are presently being investigated in this
perspective [114].
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[2] M. L. Kulić, “Interplay of electron-phonon interaction and
strong correlations: the possible way to high-temperature
superconductivity,” Physics Report, vol. 338, no. 1-2, pp. 1–
264, 2000.
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[96] U. Löw, V. J. Emery, K. Fabricius, and S. A. Kivelson, “Study
of an Ising model with competing long- and short-range
interactions,” Physical Review Letters, vol. 72, no. 12, pp.
1918–1921, 1994.

[97] J. Lorenzana, C. Castellani, and C. Di Castro, “Phase sepa-
ration frustrated by the long-range Coulomb interaction. I.
Theory,” Physical Review B, vol. 64, no. 23, Article ID 235127,
15 pages, 2001.

[98] R. J. McQueeney, Y. Petrov, T. Egami, M. Yethiraj, G. Shirane,
and Y. Endoh, “Anomalous dispersion of LO phonons
in La1.85Sr0.15CuO4 at low temperatures,” Physical Review
Letters, vol. 82, no. 3, pp. 628–631, 1999.

[99] R. J. McQueeney, J. L. Sarrao, P. G. Pagliuso, P. W. Stephens,
and R. Osborn, “Mixed lattice and electronic states in high-
temperature superconductors,” Physical Review Letters, vol.
87, no. 7, Article ID 077001, 2001.

[100] L. Pintschovius, N. Pyka, W. Reichardt et al., “Lattice
dynamical studies of HTSC materials,” Physica C, vol. 185–
189, pp. 156–161, 1991.



18 Advances in Condensed Matter Physics

[101] L. Pintschovius and W. Reichardt, “Inelastic Neutron Scatter-
ing Studies of the Lattice Vibrations of High-Tc compounds,”
in Physical Properties of High Temperature Superconductors
IV, P. Ginsberg, Ed., p. 295, World Scientific, Singapore, 1995.

[102] L. Pintschovius and M. Braden, “Anomalous dispersion of
LO phonons in La1.85Sr0.15CuO4,” Physical Review B, vol. 60,
no. 22, pp. R15039–R15042, 1999.

[103] D. Reznik, L. Pintschovius, M. Ito et al., “Electron-phonon
coupling reflecting dynamic charge inhomogeneity in copper
oxide superconductors,” Nature, vol. 440, no. 7088, pp. 1170–
1173, 2006.

[104] D. Reznik, L. Pintschovius, M. Fujita, K. Yamada, G. D. Gu,
and J. M. Tranquada, “Electron-phonon anomaly related to
charge stripes: static stripe phase versus optimally doped
superconducting La1.85Sr0.15CuO4,” Journal of Low Tempera-
ture Physics, vol. 147, no. 3-4, pp. 353–364, 2007.

[105] A. Di Ciolo and J. Lorenzana, unpublished .
[106] A. Di Ciolo, J. Lorenzana, M. Grilli, and G. Seibold,

unpublished.
[107] M. Capone, M. Fabrizio, and E. Tosatti, “Direct transition

between a singlet mott insulator and a superconductor,”
Physical Review Letters, vol. 86, no. 23, pp. 5361–5364, 2001.

[108] J. E. Han, O. Gunnarsson, and V. H. Crespi, “Strong
superconductivity with local Jahn-Teller phonons in C60
solids,” Physical Review Letters, vol. 90, no. 16, Article ID
167006, 2003.

[109] M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti, “Col-
loquium: modeling the unconventional superconducting
properties of expanded A3C60 fullerides,” Reviews of Modern
Physics, vol. 81, no. 2, pp. 943–958, 2009.

[110] M. Capone, M. Fabrizio, C. Castellani, and E. Tosatti,
“Strongly correlated superconductivity and pseudogap phase
near a multiband mott insulator,” Physical Review Letters, vol.
93, no. 4, Article ID 047001, 2004.
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