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Edge states at the interface between monolayer and bilayer graphene
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The electronic properties for monolayer–bilayer hybrid graphene with zigzag interface are studied by
both the Dirac equation and numerical calculation in zero field and in a magnetic field. Basically there
are two types of zigzag interface dependent on the way of lattice stacking at the edge. Our study shows
they have different locations of the localized edge states. Accordingly, the energy-momentum dispersion
and local density of states behave quit differently along the interface near the Fermi energy E F = 0.
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1. Introduction

In recent years, the experimental accessibility of the single
and multilayered graphene samples [1–5] has attracted consider-
able theoretical and experimental attentions due to its unusual
electronic structure described by the Dirac equation, namely elec-
trons in monolayer graphene have linear dispersion thus behave
like massless Dirac fermions at the corners of the Brillouin zone
(BZ) [6]. In the presence of magnetic field perpendicular to the
graphene plane, the system shows anomalous integer quantum
Hall effect [7–10] (IQHE) which is also different from that of the
conventional two-dimensional electron system in semiconductor
heterostructures. The Hall conductivity in the IQHE of graphene
shows plateaus at σxy = 4(N + 1/2)e2/h, in which the factor 4
comes from the four-fold valley and spin degeneracy and the shift
1/2 reflects particle–hole symmetry in the 0’th Landau level.

Edge states in graphene have been the focus of much theoret-
ical study because of the important role they play in the trans-
port [11]. It is well known that there are two basic types of edges
in graphene, namely, the armchair and zigzag edges. Some the-
oretical works [12–26] on the electronic structure of finite-sized
systems, either as molecules or as one-dimensional systems, have
shown that zigzag edged graphene has localized state near the
Fermi energy, but those with armchair edge do not have such
state. Therefore, the transport properties are very different due
to the existence of the edge state. On the other hand the hybrid
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edge structure, composed of partial monolayer and partial bilayer
graphene, which is quit general in reality, hasn’t received so much
attention. Experimentally [28] the anomalous quantum oscillations
in magnetoconductance were observed due to the peculiar physics
along the interface. After the experimental study, we presented
our studies of the electronic properties of the hybrid interface of
graphene in the APS meeting [29]. Recently we noticed there are
some new experiments and correlated theoretical studies [32,33]
on this topic. Thus we decided to present our systematical study
of the edge states of the hybrid interface.

In this work, we study the electronic properties of the hy-
brid interface via both tight-binding model and its effective theory
in the continuum limit – the Dirac equation. The edge states in
graphene can be studied experimentally by using a local probe
such as scanning tunneling microscopy (STM). The STM experi-
ments measure the differential conductance which is proportional
to the density of states. Numerically we can study the local density
of states (LDOS) which is defined as [27]:

N(r, eV ) = ∣∣Ψα(r)
∣∣2

δ(eV − Eα), (1)

where Ψα(r) is the eigenfunction with energy Eα . The LDOS shows
the strength of the local electronic density which is related to the
strength of the signal in STM experimental data. Our study of the
hybrid edge graphene shows that there are always zero energy
states localized near the zigzag hybrid edge although the distribu-
tion of LDOS of these edge states strongly depends on the details
of how the edge stacks together. The dispersion curve around the
Dirac cones also shows different characters for different edge ar-
rangements either within or without a magnetic field.
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Fig. 1. (Color online.) The schematic pictures for two kinds of hybrid monolayer–bilayer interfaces. The atoms of the extended bottom layer (layer 1) are indicated by black
dots (smaller) while the green dots (larger) represent the top layer (layer 2) which terminates at the interface. In the left plot, the top layer is ended with B2 sites (B-type)
while on the right it is ended with A2 sites (A-type).
This Letter is arranged as follows: In Section 2, we set up the
model Hamiltonian in different geometries. The zero energy solu-
tions in zero field and in magnetic field are obtained by solving
the Dirac equations. The numerical results in a finite system are
shown in Sections 3 and 4. Some discussions and conclusions are
in Section 5.

2. Model and different geometries

We consider a bilayer graphene with Bernal stacking, as shown
in Fig. 1; its tight-binding Hamiltonian can be written as:

H = −t
2∑

i=1

∑
m,n

a†
i;m,n(bi;m,n + bi;m−1,n + bi;m,n−1)

− t⊥
∑
m,n

a†
2;m,nb1;m,n + h.c., (2)

where ai;m,n (bi;m,n) is the annihilation operator at position (m, n)
in sublattice Ai (Bi), and i = 1,2, indicating the two different lay-
ers. The first term is the Hamiltonian within each layer, and the
second term describes the interlayer coupling in which we only
consider the hopping between the two atoms stacked right on top
of each other. Let us label the bottom (extended) layer as layer 1,
the half-plane upper layer as layer 2. In this work we will only
consider the Bernal stacking. One can expand the effective Hamil-
tonian near the two Dirac points K and K ′ which are time reversal
symmetric partners. In momentum space, the Hamiltonian near K
can be written as:

H =
∑

k

Ψ
†

k · Hk · Ψk, (3)

where

Hk =
⎛
⎜⎝

0 v F k 0 0
v F k∗ 0 t⊥ 0

0 t⊥ 0 v F k
0 0 v F k∗ 0

⎞
⎟⎠ = v F

⎛
⎜⎝

0 k 0 0
k∗ 0 γ 0
0 γ 0 k
0 0 k∗ 0

⎞
⎟⎠ , (4)

in which k = kx + iky , γ = t⊥/v F , and Ψk = (a1;k,b1;k,a2;k,b2;k).
For the other Dirac point, as stated before, H K ′ = H∗

K . Here we only
consider the zigzag type interface (or edge) to explore the localized
edge state. Without magnetic field and the interface, it is sufficient
to discuss just one Dirac cone in the continuum model due to the
symmetry. But with the interface breaking the inversion symmetry
and the magnetic field breaking the time reversal symmetry, the
two Dirac points are not equal to each other, and both must be
studied.

According to the lattice orientation we adopt as shown in Fig. 1,
the zigzag interface is along the x direction. For simplicity, we con-
sider an infinite stripe along the x direction, therefore the system
has translational symmetry along the x direction thus kx remains a
good quantum number. We then do Fourier transformation in the
x direction and reduce the 2D problem to 1D. There are actually
TWO distinct geometries which are physically different. i) The out-
most sites of the upper layer are the B2 sites which do not stack
directly on the lower layer atoms as shown in Fig. 1 (left). The B2
sites are the low energy degrees of freedom (along with A1) which
are kept if one further considers a 2 × 2 effective theory on energy
scale ε � t⊥ . We label it the B-type stacking according to the type
of the outmost atoms; ii) A-type stacking, i.e., the A2 sites are the
outmost sites on the upper layer as shown in Fig. 1 (right). The A2
sites, together with the B1 sites which they stack right on top of,
form the dimer sites. In the 2 × 2 low energy effective theory the
wavefunctions have almost zero weight on those dimes sites when
ε � t⊥ . As a result these dimers are ignored in this limit. In the
other words, they are occupied considerably only at high energy
(comparing to t⊥).

3. Interface properties in zero field

For a semi-infinite sheet, it is well known that the existence
of the zero energy edge modes in both monolayer and bilayer
graphene. Presumably, such modes are also expected at the in-
terface between them. Let us consider the following geometry:
a half-plane of monolayer graphene and a half-plane of bilayer
graphene joined along the zigzag edge; and look for solution(s)
with zero eigen-energy by using the Dirac equation.

Ψmono(x, y) =
(

ψA(x, y)

ψB(x, y)

)
(5)

and

Ψbi(x, y) =
⎛
⎜⎝

ψA1(x, y)

ψB1(x, y)

ψA2(x, y)

ψB2(x, y)

⎞
⎟⎠ (6)

are the wavefunctions at Dirac point in the monolayer and bi-
layer respectively. Assuming the interface locates at y = 0, the
boundary condition for monolayer is then straightforward: both
components of the wavefunction must be continuous. For the up-
per layer, it terminates at y = 0 and therefore satisfies the open
boundary condition. Note that the term ‘terminates’ indicates the
last row of lattice sites are the high/low energy sites ( A2/B2), how-
ever, the boundary condition is not the wavefunctions being zero
on these sites. They should be the wavefunctions of the sites one
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unit cell ‘outside’ the boundary being zero. Therefore, at the edge,
the wavefunctions satisfy [31]:

ψA(x,0) = ψA1(x,0), ψB(x,0) = ψB1(x,0),{
ψA2(x,0) = 0 B-type,

ψB2(x,0) = 0 A-type.
(7)

In the monolayer region with zigzag interface, we do the sub-
stitution k → kx + ∂y in the Dirac Hamiltonian Hmono = v F

( 0 k
k∗ 0

)
[11]. The zero energy solution is{

φA(y) = e ykx C2,

φB(y) = e−ykx C1.
(8)

In analogy, we do the same substitution in the bilayer Hamiltonian
(Eq. (4)) and obtain its zero energy solution:⎧⎪⎨
⎪⎩

φB1(y) = e−ykx A1,

φB2(y) = −e−ykx yγ A1 + e−ykx A2,

φA1(y) = e ykx A3 + e ykx yγ A4,

φA2(y) = e ykx A4.

(9)

Applying the boundary condition, for the B-type interface (so
φA2(y = 0) = 0), one easily finds that nonzero solutions only exist
for kx > 0. The solution is

C1 = C2 = A1 = A3 = A4 = 0, A2 = const. (10)

For the A-type interface, one finds that for kx > 0

C1 = C2 = A1 = A2 = A3 = 0, A4 = const. (11)

Near the other Dirac cone, the solutions remain the same but only
exist for kx < 0. The only nonzero constant is said to be deter-
mined by normalization. Both results are in agreement with the
tight-binding analysis [30].

Even though the zero energy states exist for both types of inter-
face, there is an important difference between them. In the case of
B-type edge, the wavefunction is only nonzero in the upper layer,
which is trivial as such mode is expected when a graphene sheet
is terminated at a zigzag edge. However, the A-type is less trivial.
The wavefunction also lives on the extended layer at the inter-
face where no cut is present. We interpret this as following: when
the dimer sites are the boundary, the interlayer coupling t⊥ im-
poses an energy cost for electrons going through the interface in
the extended layer which can be considered as an effective poten-
tial barrier. The potential barrier can localize the electron states
along the interface.

We numerically diagonalize a system with a finite width up to
600 unit cells in the y direction. The intralayer hopping strength t
is set to identity and the interlayer hopping strength t⊥ = 0.2t . The
dispersion relation is shown in Fig. 2. Compare the dispersions in
different geometries, the A-type edge has an obviously stronger
level anticrossing feature than the other. The reason is that for
B-type edge, the zero energy edge state just locates on the bilayer

Fig. 2. The energy-momentum dispersion relation around one Dirac cone for the
hybrid edge graphene with (a) B-type and (b) A-type respectively. The latter one has
more energy level anticrossing near the Fermi level due to the effective potential at
the edge.

graphene which has quadratic dispersion and has nothing to do
with the monolayer part with a linear dispersion. However, in the
case of A-type edge, the zero energy edge state also has compo-
nent on the monolayer graphene at the interface, the linear dis-
persion part for monolayer should also connect to the edge state
which induces more energy level anticrossing around the Dirac
points. Fig. 3 shows the LDOS for the two kinds of hybrid graphene.
We label the coordinate of the extended layer by d ∈ [0,600) and
the d ∈ [900,1200) for upper layer. Therefore, the interface locates
at d = 300 and d = 900 for layer 1 and 2 respectively. One can
notice that the localized edge state shows as a peak at zero en-
ergy along the interface. The prominent difference is that the peak
just appears on the top layer of bilayer part in the B-type case;
but for the A-type case, the zero energy peak appears on both two
layers although still locates at the bilayer side. The numerical re-
sults are in agreement with the analysis by the Dirac equations
and we conclude that the two kinds of edge arrangements should
have different consequences in experiments since the different dis-
tributions of the zero mode. Here we notice that the other peaks
in LDOS at the end of the finite system is the signal of the general
monolayer or bilayer zigzag edge graphene as discussed in many
others work [12–26].

4. Interface properties in magnetic fields

In the presence of magnetic field, the Dirac equation should be
modified by doing the substitution k → k + eA

c . Assume the mag-
netic field is along the direction of perpendicular to the plane B =
Bẑ, B > 0. We adopt the Landau gauge �A = (Ax, A y) = (−yB,0)

due to the translational invariant along x direction. Thus the zero
energy solution of a monolayer graphene is{

φA(y) = C1ekx y− eB
2c y2

,

φB(y) = C2e−kx y+ eB
2c y2

.
(12)

Fig. 3. (Color online.) The LDOS of the hybrid bilayer graphene with B-type (left) and A-type (right) hybrid interface respectively. The width of monolayer is 600 unit cells of
honeycomb lattice. The region d ∈ [0,600) is the lower extended layer and region d ∈ [600,1200) is the upper layer which is cut in the middle.
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Similarly, the zero energy solution for bilayer graphene becomes:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φA1(y) = (A3γ y + A2)ekx y− eB
2c y2

,

φB1(y) = A1e−kx y+ eB
2c y2

,

φA2(y) = A3ekx y− eB
2c y2

,

φB2(y) = (−A1γ y + A4)e−kx y+ eB
2c y2

.

(13)

Applying the same boundary conditions as in the zero field case,
we will have the solutions. For B-type, one gets

C2 = A1 = A3 = A4 = 0, C1 = A2 = const. (14)

For A-type the solution is

C2 = A1 = A4 = 0, C1 = A2 = const1, A3 = const2. (15)

The constants are determined by normalization conditions also.
One immediately notices that the wavefunction lives only on the
A sublattice. We should note that on the other Dirac point, the
solutions remain the same form, but resides on the B sublattice.
Another important feature of the solution is that for A-type we ac-
tually have TWO independent solutions here.

4.1. Dispersion relation

The Schrödinger equation in the magnetic field for a monolayer
and bilayer graphene can be written as

1√
2

(
0 ∂ξ + ξ

−∂ξ + ξ 0

)
Ψmono = εΨmono (16)

and

1√
2

⎛
⎜⎝

0 ∂ξ + ξ 0 0
−∂ξ + ξ 0 γ̃ 0

0 γ̃ 0 ∂ξ + ξ

0 0 −∂ξ + ξ 0

⎞
⎟⎠Ψbi = εΨbi, (17)

where ξ = y
lB

− lBkx , lB =
√

c
eB , ε = E

ωc
, ωc = √

2 v F
lB

, γ̃ = γ
v F ωc

. The

solution in the bulk of the monolayer is

Ψmono =
( 1

Γ (ε2)
Dε2−1(

√
2ξ)

± 1
Γ (ε2+1)

Dε2(
√

2ξ)

)
=

(
ψε2−1(ξ)

±ψε2(ξ)

)
, (18)

where the ε = ±√
N , N = 0,1,2, . . . , and Dν ’s are the parabolic

cylinder functions, which combined with the factor 1/Γ (v + 1)

give us the eigen-wavefunctions of a harmonic oscillator ψν(ξ).
The bulk solution to the bilayer Hamiltonian can be written in a
similar way:

Φbi =

⎛
⎜⎜⎜⎜⎜⎝

ε(ε2−( j+1)−γ̃ 2)

γ̃
√

j( j+1)
ψ j−1

ε2−( j+1)

γ̃
√

j+1
ψ j

ε√
j+1

ψ j

ψ j+1

⎞
⎟⎟⎟⎟⎟⎠ , (19)

where ε = ±
√

1+γ̃ 2+2 j±
√

(1+γ̃ 2)2+4γ̃ 2 j
2 ( j = 0,1,2, . . .) is the

eigen-energy.
However, for the interface problem, we need solutions on the

half-plane. In this case, we put the bilayer part on the y > 0 side,
and the monolayer part on the y < 0 side. Therefore, for the bi-
layers, the solutions on (0,∞) take on the same form as in the
bulk, but j’s are no longer required to be integers. Instead, we now
should replace j’s by

j1,2 = ε2 − 1

2
±

√
ε2γ̃ 2 + 1

4
, (20)

and ε now varies continuously. For the monolayer, the solution on
(−∞,0) can be chosen as

Ψmono =
(

ψε2−1(−ξ)

∓ψε2(−ξ)

)
. (21)

With the above solutions, and combined with the boundary condi-
tions that are already discussed in the zero field cases, we obtain
the transcendental equations that dictate the dispersion relations.
For the B-type interface,(
ε2 − ( j1 + 1)

)
D j1−1(−

√
2kx)

(
Dε2(

√
2kx)D j2(−

√
2kx)

+ Dε2−1(
√

2kx)D j2+1(−
√

2kx)
)

= (
ε2 − ( j2 + 1)

)
D j2−1(−

√
2kx)

(
Dε2(

√
2kx)D j1(−

√
2kx)

+ Dε2−1(
√

2kx)D j1+1(−
√

2kx)
)
, (22)

where we have set lB = 1. For the A-type, the dispersion equation
is(
ε2 − ( j1 + 1) − γ 2)D j1(−

√
2kx)

(
Dε2(

√
2kx)D j2(−

√
2kx)

+ Dε2−1(
√

2kx)D j2+1(−
√

2kx)
)

= (
ε2 − ( j2 + 1) − γ 2)D j2(−

√
2kx)

(
Dε2(

√
2kx)D j1(−

√
2kx)

+ Dε2−1(
√

2kx)D j1+1(−
√

2kx)
)
. (23)

However, one must note that in the presence of magnetic field,
the time reversal symmetry is broken, therefore, the other Dirac
cone, the time reversal partner, no long behaves the same way. So
the dispersion relation must be calculated separately. By the same
approach, one can get, for the B-type edge,(
ε2 − j1

)
D j1(−

√
2kx)

(
j2 Dε2(

√
2kx)D j2−1(−

√
2kx)

+ ε2 Dε2−1(
√

2kx)D j2(−
√

2kx)
)

= (
ε2 − j2

)
D j2(−

√
2kx)

(
j1 Dε2(

√
2kx)D j1−1(−

√
2kx)

+ ε2 Dε2−1(
√

2kx)D j1(−
√

2kx)
); (24)

for the A-type edge,

( j2 + 1)
(
ε2 − j1 − γ 2)D j1(−

√
2kx)

(
j2 Dε2(

√
2kx)D j2−1(−

√
2kx)

+ ε2 Dε2−1(
√

2kx)D j2(−
√

2kx)
)

= ( j1 + 1)
(
ε2 − j2 − γ 2)D j2(−

√
2kx)

× (
j1 Dε2(

√
2kx)D j1−1(−

√
2kx)

+ ε2 Dε2−1(
√

2kx)D j1(−
√

2kx)
)
. (25)

It is easy to see from the dispersion equation that when |kx| is
very large, the eigen-energy should restore to either the monolayer
value or the bilayer value as the parabolic cylinder functions Dν

only converge to zero for integer ν at infinity. But what interests
us is how these bulk Landau levels connect with each other when
crossing the interface. To study that, we solve the above equations
for ε and kx near the interface kx = 0 for a finite-sized system as
shown in Fig. 4. It is shown that the Landau levels match in dif-
ferent ways at two Dirac cones. Near the Dirac cone K (K ′), the
zero energy Landau levels in the bilayer region split, one branch
rises up to become the n = 1 Landau levels in the monolayer
while the other branch remains as zero energy states. The other
Landau levels continues from bilayer to monolayer accordingly,
i.e. n = 1|bi → n = 2|mono . . . . However, near the other Dirac cone
K ′(K ), the zero energy state remains intactly, so the higher Landau
levels connect in the way of n = 1|bi → n = 1|mono . . . . We also see
an effect of the effective potential barrier imposed by the A-type
in the dispersive Landau levels near the interface. For a certain
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Fig. 4. (Color online.) The dispersion curve around Dirac cones in the presence of magnetic field. The upper two figures are for the B-type and A-type interfaces around one
Dirac cone respectively, and the lower two figures are that for the other Dirac cone.

Fig. 5. The LDOS of the hybrid bilayer graphene with B-type (left) and A-type (right) edge in a magnetic field. The strength of the magnetic field is expressed as magnetic
flux φ in each unit cell φ = φ0/1315 (φ0 is the magnetic flux quanta) which corresponds to B ∼ 60T .
range of field strength the dispersion develops a local maximum
for A-type while the B-type only develops a flat plateau feature.

Fig. 5 shows the LDOS for hybrid bilayer graphene in a magnetic
field with B-type and A-type edge respectively from a numerical
calculation of a system with width of 600 unit cells in y direction.
The Landau level structures are clear in the bulk both in monolayer
and bilayer graphene. Their mismatch induces dispersion along the
interface. On the other hand, according to the analysis of the Dirac
equation, it also shows the existence of the density peak at Fermi
energy E = 0 only on the upper layer for B-type edge and on both
two layers for A-type edge.

5. Discussion and conclusion

We study the edge state at the hybrid interface between mono-
layer and bilayer graphene both in zero field and in a magnetic
field. There are two types of interface structures addressed by the
B-type and A-type due to the type of the terminated atoms at
the edge. We find the localized zero energy edge state always ex-
ists for both two types of interface whether in the presence of
the magnetic field or not, however, the distribution of the edge
state and the energy-momentum dispersion near the Dirac cone
and the LDOS shows significantly different features to two types
of hybrid edge. For B-type interface, the edge state only lives on
the edge of the upper layer graphene which reflects as one LDOS
peak at E = 0 in the upper layer. The edge state has weights on
both two layers along the A-type interface. Thus, we observed
the enhanced LDOS peak in the bottom layer also. The dispersion
curve of the A-type edge develops strong anticrossing feature in
the absence of magnetic field and local maximum in the pres-
ence of magnetic field which we explained as the effect of the
effective potential imposed by dimer edge. Similar differences be-
tween B-type and A-type were also discussed in the calculation
of transmission coefficients across the interface [31,33,34]. For the
A-type edge the transmission probability is reduced significantly

for incoming electrons with energy E ∼ t⊥ which can be inter-
preted in a similar way. We also show that in the presence of a
magnetic field the dispersion of Landau levels continuously goes
through the interface in different manners at two Dirac cones be-
cause of the inversion symmetry broken. Here we just consider the
nearest interlayer interaction γ in Eq. (4) for simplicity. The other
interlayer terms, such as the A1–B2 interaction γ3 � γ (which is
at the upper right corners in Eq. (4)) are only relevant at weak
fields. It has nontrivial effect in the bulk, such as the shift the
energy of the Landau level and splitting of the Dirac point [35].
However, if we look at the zero energy solution of the Dirac
equation, the differences of the relative weight of the wavefunc-
tion between two types of interfaces are still survives. For B-type,
the amplitude of φB1 is much smaller comparing to that of φB2,
while for A-type edge, they are quite comparable. Therefore, the
edge state properties are still dominated by γ , the dimer cou-
pling.

In summary, the physical properties of hybrid graphene systems
are mostly dominated by both that of the monolayer and bilayer
graphene, and also how they are stacked. The existence of anti-
crossing in zero field and the dispersive Landau levels in the mag-
netic field near the interface could be related to the unexpected
feature other than that of the monolayer or bilayer graphene in
the magneto transport experiment [28]. Further study of the hybrid
structures for a more realistic setup, like including edge disorder,
gate voltage, etc., are needed to deeply understand the experimen-
tal data.
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