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Abstract
Once the fractional quantumHall (FQH) state for afinite-sized system is put on the surface of a
cylinder, the distance between the two endswith open boundary conditions can be tuned by varying
the aspect ratio γ. It scales linearly with increasing the system size and therefore has a larger adjustable
range than that on a disk. The previous study of the quasi-hole tunneling amplitude on a disk byHu
et al (2011New J. Phys. 13 035020) indicates that the tunneling amplitudes have a scaling behavior as a
function of the tunneling distance and the scaling exponents are related to the scaling dimension and
the charge of the transported quasiparticles. However, the scaling behaves poorly due to the narrow
range of the tunneling distance on the disk.Here we systematically study the quasiparticle tunneling
amplitudes of the Laughlin state in the cylinder geometry which shows amuch better scaling behavior.
In particular, there are some crossover behaviors at the two length scales when the two open edges are
close to each other. These lengths are also reflected in the bipartite entanglement and the electron
Green’s function as either a singularity or a crossover. These two critical length scales of the edge–edge
distance, Lx

c1 and L ,x
c2 are found to be related to the dimension reduction and back scattering point

respectively.

1. Introduction

The strongly correlated electron system reveals plenty of non-trivial properties beyond the single-particle
picture. The fractional quantumHall effect (FQHE) [1] is a paradigmof strongly correlated system that occurs in
a two-dimensional electron gaswith a perpendicularmagnetic field. The FQH state is one of themost studied
objects in condensedmatter physics and has a topological protected ground state and non-trivial excitation. In
particular, the FQH states on the second Landau level, such as 5 2n = and 12 5,n = are expected to have
non-Abelian excitations and have potential applications in topological quantum computation [2–4].
Quasiparticle tunneling through narrow constrictions or point contacts that bring counter-propagating edges
close could serve as a powerful tool for probing both the bulk topological order and the edge properties of
fractional quantumHall liquids. In particular, interference signatures fromdouble point contact devicesmay
reveal the statistical properties of the quasiparticles that tunnel through them [5], especially the non-Abelian
ones [6, 7]. In disk geometry, a quasiparticle can tunnel from the center to the edge by a single particle tunneling
potentialV Vttunnel d q= ( )which breaks the rotational symmetry [8]. The ring shape of the Landau basis wave
functionwith angularmomentum m on the disk, i.e. r r em

m r 42j ~ -( ) , has radius m l2 .B Therefore the
tunneling distance d is tuned by insertingNqhflux quantum, orNqh quasiholes at the center, namely
d l N N N2 2B qh qhorb= + -( ) whereNorb is the number of orbitals. The shape of the system evolves from

disk to annulus andfinally to a quasi-1D ringwith increasingNqh. In the ring limit (orCFT limit)with d 0, or
N ,qh  ¥ we found a universal analytical formula for the tunneling amplitudes of the bulk quasihole [9] and
the edge excitations [10]. On the other hand, the quasihole tunneling amplitudes were found to have a scaling
behavior as a function of the system sizeNe and the tunneling distance d. Interestingly, the fractional charge and
the scaling dimension appear in the exponents of the scaling function [9]. However, if we look carefully at the
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data of the tunneling amplitude in disk geometry, the scaling function does not work verywell for small dwhich
was treated as afinite size effect [8] due to the fact that a limited number of electrons can be handled in the
numerical diagonalization. It is also hard to look into this region on a disk since Nqh  ¥while d 0.

In this paper, we alternatively consider the physics properties of the FQH liquid in the cylinder geometry.
The cylinder has as its advantages the fact that the distance between the two ends is proportional to the system
size and can be tuned from zero to infinity smoothly by varying the aspect ratio L L ,y xg = where Ly is the
circumference on the sidewith periodic boundary and Lx is the length of thefinite cylinder with open
boundaries. As a comparison, in the disk geometry, the tunneling distance has amaximumwhich is the radius of
the system R N2 orb= and d N N2 qhorb~ for N N .qh orb This is very inconvenient whenwewant to look
at the small d region since numerous quasiholes orfluxwill be inserted at the center of the disk. On the other
side, when 0,g  namely in the thin cylinder limit, the two adjacent Landau orbitals have practically zero
overlap. In this case, theHamiltonian is dominated by the electrostatic repulsionwhich contains the direct
interaction Vm n n mj j j já ñ∣ ∣ and the exchange interaction Vm n m nj j j já ñ∣ ∣ . The ground state is generally called a
charge density wave (CDW) state, or Tao–Thouless (TT) crystal state [11, 12] on the torus with the electronic
occupation pattern 1001001001 in order tominimize the electrostatic repulsion energy. Thewave function of
the FQH state [13] can be obtained by diagonalizing themodelHamiltonianwith hardcore interaction, or the
Hamiltonian onlywithV 01 ¹ in the language ofHaldane’s pseudopotential. Themore interesting case is when
g  ¥ or L ,y  ¥ to keep the total area of the surface L L l N2x y B

2
orbp= invariant; to keep the total penetrated

flux invariant, Lx then approaches zero. Itmeans the two-counter-propagating edges at the two ends of the
cylinder are coming close to each other and the systemfinally evolves into a one-dimensional system. In this
case, because of the strong overlap of all the Landau orbitals, theGaussian factors of each Landauwavefunction
are the same and can be erased by normalization. In this one-dimensional limit, the FQHwave function can be
described by the Jack polynomials and therefore all the results are the same as those that we did on the disk in the
ring limit. The Jack polynomial is one of the polynomial solutions for theCalogero–SutherlandHamiltonian
[14]which can describe the Read–RezayiZk-parafermion states with a negative parameterα and a root
configuration (or partition). The Jack polynomial is a powerfulmethod in studying the FQHE as it can construct
not only themodel wave function for the Read–Rezayi series [15–17], but also the low-lying excitations [18, 19].
Another advantage of the cylinder geometry is its computational convenience comparedwith either the disk or
sphere geometries whichwere discussed in the densitymatrix renormalization calculation [20]. In this paper, we
reconsider the quasiparticle tunnelingwith cylinder geometry especially in the region of small tunneling
distance.Here the quasiparticle can tunnel fromone edge to the other as sketched infigure 1. Thus the tunneling
distance equals the length Lx of the system.Wefind a richer structure in this region and two characteristic length
scales appear not only in the quasiparticle tunneling, but also in thewavefunction overlap, bipartite
entanglement entropy and electronGreen’s function.

The rest of this paper is organized as follows. In section 2, we consider the tunneling amplitudewhile varying
the length of the finite cylinder for e 3 and e2 3 quasiholes in the Laughlin state. In section 3, the bipartite
entanglement entropy, both in orbital space and real space is discussed. The results of the electronGreen’s
functions are discussed in section 4 and summaries and discussions are in section 5.

2.Quasiparticle tunneling for Laughlin state

For electrons on a cylinder with circumference Ly in the y-direction in amagnetic field perpendicular to the
surface, the single electronwave function in the lowest Landau level is:

Figure 1.The sketch of the quasiparticle tunneling fromone side to the other side of the cylinder. The tunneling path is given by a
potential V V yttunnel d= ( )which has length Lx.
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= j 0, 1, 2=   are the transitionalmomentum along the y-direction.Here themagnetic

length l c eBB = has been set as the unit. For afinite-sized system, the number of basis states or orbits,Norb,
equals the amount ofmagnetic flux quantumpenetrating from the surface. Each orbit occupies an area l2 .B

2p
Therefore, the length in the x-direction for afinite system isfixedwith a given aspect ratio γ, namely
L l N 2 .x B orb p g=

To study the quasiparticle tunneling of the Laughlin state at 1 3,n = a quasihole with charge e 3 or e2 3 is
put on one edge of the cylinder as shown infigure 1.Here themodel wavefunction for the Laughlin state can be
obtained by diagonalizing themodelHamiltonianwith hardcore interaction, or justV 01 ¹ in the language of
theHaldane’s pseudopotential. It can also be obtained by using the Jacks with the so-called root configuration

1001001001. The quasihole state for e 3 and e2 3 is just the translated state with one and two sites along the
x-direction respectively. Alternately, we can say a quasihole is inserted at the left edge of thefinite cylinder which
is represented as roots 01001001001and 001001001001 for e 3 and e2 3 respectively in the Jack
polynomial description. A simple single-particle tunneling potential

V V yttunnel d= ( )

is assumed. It describes a tunneling path along the x-direction and therefore breaks the translational symmetry
in the y-direction. Then thematrix element is k V mtunnelá ñ∣ ∣ , which is related to the tunneling of an electron from
the single particle state mñ∣ to state k ,ñ∣ is (setV 1t = )

v k m k V m, e . 2p
m k

tunnel
Ly

2
2

2

= =
- -p

( ) ( )
( )

It is clear that v k m, e ep
m k d l4 4Ly Ly B

2 2
2

2= =- - -
p p( )( ) ( ) where d is the distance between the twoGaussians.

Themany-body tunneling operator can bewritten as the summation of those for the single particle

V y .t i iåt d= ( ) Thenwe can calculate the tunneling amplitude formany-bodywave function qh 0tG = áY Y ñ∣ ∣
inwhich 0Y ñ∣ and qhY ñ∣ are the ground state and quasihole state wave function respectively. In this section, we
just consider the tunneling amplitudes for the e 3 and e2 3 quasiholes in Laughlin state at 1 3.n = Thematrix
elements consist of contributions from the respective Slater-determinant components m m, , N1 0¼ ñ Î Y∣ and
k k, , .N qh1 ¼ ñ Î Y∣ There are nonzero contributions only when the two sets m m, , N1 ¼ and k k, , N1 ¼ are

identical except for a single pairm′ and k′with angularmomentumdifference k m N¢ - ¢ = for e 3 and

k m N2¢ - ¢ = for e2 3whereN is the number of electrons. Therefore, we have v ep
e N3 Ly

2
2

2

=
- p

and

v e .p
e N2 3 2

Ly

2
2

2

=
- p ( )

The tunneling amplitude in the second quantization can bewritten as:

k k k y C C m m m .qh
i

n i k m n0 1 2 1 2åt dG = Y Y = + ( )

From equation (2), it is known that the tunneling amplitude decreases exponentially with increasing the
tunneling distance which is proportional to m k .-∣ ∣ The distance of the quasiparticle tunneling of themany-
body state, or the length of the cylinder Lx, is determined by the size of the system and the aspect ratio γ. For an
N-particle system at fixedfilling factor, Lx can be tuned from0 to¥ by changing the aspect ratio γ. Aswith the
disk, numerous quasiholes were added at the center whichmakes the radius change from N2 orb to 0.With a
given Ly, the distance between two single-particle orbitals on the cylinder is a constant whichmakes the
tunneling distance scale proportional to the system size, i.e. d Nµ on the cylinder comparedwith d N1 2µ on
the disk. The linear relation guarantees a smooth changewhile varying γ.

Figures 2(a) and (b) show the tunneling amplitudes for the e 3 and e2 3 Laughlin quasiholes as a function of
the tunneling distance Lx.When L ,x  ¥ or 0,g  the system is in a thin cylinder limit and the ground state is
a crystal-like state inwhich electrons are separated; then the quasiparticle cannot tunnel fromone side to
another, i.e. 0.G  On the other side, when L 0,x  or ,g  ¥ all the single particle orbitals collapse onto
each otherwhich corresponds to the ring limit on disk, or theCFT limit inwhich case the geometry factor of the
many-bodywave function can be neglected. Our previous studies [9, 10] show that the tunneling amplitude for

e 3 and e2 3 quasiholes in theCFT limit for a systemwithN electrons can be exactly represented as:

3
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l

m lW = W W( ) ( ) ( ) For example,

2 2 1.5e 3 1 3

1 4
G = =´

´
( ) and 2 2 2 0.6.e2 3 2 3

1 2 4 5
G = ´ =´

´ ´ ´
( ) The numbers in the fractions are the position

of the 1 s in equation (3). Formally, the tunneling amplitude for e 3 quasihole for Laughlin state has an
algebraic expression N B N , ,e N

M M
3 1G =( ) ( ) inwhich M 1 3n= = for the Laughlin state and the beta

functionB is defined as B x x x, .b b b= G G G +( ) ( ) ( ) ( ) Figures 2(a) and (b) show that the tunneling
amplitudes saturates exactly at these CFT limit valueswhen L 0.x  In themedium region of Lx, the tunneling
amplitude has a dramatic change from these CFT values to zero. The state in this region is close to the
Laughlin state, thus the signal of the decreasing of the quasihole tunneling amplitude can be seen as a
measurement of a phase transition (PT)-like from the thin cylinder state with zero tunneling amplitude to the
CFT limit with afinite tunneling amplitude.Here we should note that we use the terminology PT-like instead of
PT since there is actually no phase transition in the ground state while varying Lx. The topological properties of
the ground state in theCFT limit are the same as those in the thin cylinder limit [21–23]. As shown in figures 2(c)
and (d), the data for different system sizes collapse into each other after the following scaling conjecture is
applied

N L N, e . 4q
x

qL el
0

2q
x B

2

G = G a-( ) ( ) ( )

The exponent qa is related to the scaling dimension of the quasiparticle as 1 2 .q qa = - D The 1 3n =
Laughlin quasihole operator can bewritten as eqh

mi 3y = f with a primary charge bosonic fieldf in CFT.
Therefore, the scaling dimension for the e 3 and e2 3 quasiholes are 1 6e 3D = and 2 3e2 3D = respectively
and then 2 3e 3a = and 1 3.e2 3a = - In disk geometry [8], the best scaling parameter for e2 3was

0.4e2 3a = - which has a large deviation from the theoretical prediction.We think this deviation should come
from the insufficient tunneling distancewhich ismaximized at the radius of the disk. On the other hand, aswe

Figure 2.The tunneling amplitudeΓ as a function of tunneling distance Lx for e 3 (a) and e2 3 (b) Laughlin quasihole for systemwith
4−10 electrons. The data fromdifferent systems collapse into a single curvewith a scaling function in equation (4). The exponents are

2 3e 3a = (c) and 1 3e 3a = - (d) for the two types of quasiholes. The insetfigure shows the enlarged rescaled data for small Lx.
Some crossover points are labeled by arrows.
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discussed above, the tunnel amplitude data near d= 0 ismissed due to the huge number of quasiholes needed to
be inserted at the center. On the cylinder, as shown in figures 2(c) and (d), the scaling conjecture of equation (4)
works perfectly when Lx is larger than a specific value. The reasonwe are saying this is that if we enlarge the
rescaled data in the small Lx region as shown in the insetfigure, crossover behaviors fromdifferent systems occur
around L l2.5x

c
B

1  and L l4.2x
c

B
2  as shownby the arrows infigure 2(c). The crossover at L l2.5x

c
B

1  also
remained the same infigure 2(d) for the e2 3 quasihole.Here we should note that there is no crossover for larger

Lx infigure 2(d). However, we observe that the scaling behavior starts to break downnear L l5.2 .x
c

B2
¢  Thefirst

crossover at L l2.5x
c

B
1  can be explained as a transition from a two-dimensional system to a one-dimensional

system. The 1D system corresponds to theCalogero–Sutherlandmodel [24]which actually is the origin of the
holomorphic part of the FQHwave function, or the Jack polynomials [15–17]. The dimension reduction of the
FQH state was also considered in the composite fermion systems [25, 26]. Alternately, we can say that the system
is in theCFT limit while L L .x x

c1< The second critical value L l4.2x
c

B
2  for e 3 and L l5.2x

c
B2

¢  for e2 3 is the
transition point where the scaling behavior is broken down. This can be explained by the breaking down of
tunneling behavior between the two independent edges due to gluing the two anti-propagating edges together
when varying γ. Alternately, we can say that Lx

c2 is the length scale at which the two edges start to interact with
each other.When L L ,x x

c2< there are back scatterings between the two anti-propagating edges. The different
values of Lx

c2 between the e 3 and e2 3 quasiholes should be from their size difference. Anotherway to
extrapolate the critial point Lx

c2 is by renormalizing the data by its CFT value from equation (3) as shown in
figure 3. Interestingly, the data for different sizes have a scaling-like behavior that collapses into one curve. The
inset plots infigure 3 are thefirst-order deviations of the normalized tunneling amplitudes. Again the first
deviations have peaks at L l4.2x

c
B

2  both for e 3 and e2 3 by extrapolating to the thermodynamic limit with
N . ¥

On the other hand, besides theN-dependence of the tunneling amplitudes, equation (4) tells us that the ratio
of the two types of tunneling amplitude is expected to have an asymptotic behavior which depends on Lx:

e e . 5
e

e

L L l L l
2 3

3

2 3 3 2 0.083x x B x B

2 2 2 2⎡
⎣⎢

⎤
⎦⎥G

G
~ »- - -( ) ( ) ( ) ( ) ( )

Infigure 4, we plot the ratio e e2 3 3G G as a function of Lx for a systemwith 6−10 electrons. Unlike the data on a
disk [8] inwhich therewas a sudden changewhile the first quasihole was inserted at the center, the ratio on the
cylinder is smooth as a function of Lx. The data infigure 4 can befitted by a solid linewith

ee e x l2 3 3 0.078 B
2G G » - ( ) which is consistent with the expected behavior in equation (5). Compared to the disk,

the ratio of the tunneling amplitude for e 4 and e 2 for theMoore–Read state on the disk has an asymptotic
ee e d l2 4 0.083 B

2G G » - ( ) which has a relatively large deviation from the expected behavior
e .e e d l2 4 0.047 B

2G G » - ( ) For the Laughlin state, the numerical and theoretical predictions are
e ,e e d l2 3 3 0.05 B

2G G » - ( ) ee e d l2 3 3 0.083 B
2G G » - ( ) respectively.Moreover, if we just plot the data for 10

electrons as in the inset offigure 4, it is shown that the deviation of the asymptotic behavior occurs near
L l4.3x B= which is close to L .x

c2~ This deviation also demonstrates that the tunneling has been affected by the
edge–edge interaction at this length scale.

Figure 3. (a)The normalized tunneling amplitude as a function of tunneling distance for the e 3 (a) and e2 3 quasihole (b). The inset
figures are theirfirst-order derivations which have peaks at L l4.2x

c
B

2  both for e 3 (a) and e2 3 (b) by extrapolating to N . ¥
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3. Bipartite entanglement entropy

The idea that the quantum entanglement [27] in a bipartite system can describe different phases ofmatter has
emerged over the past few years. This approach has provided plenty of new insights, where traditionalmethods
based on symmetry breaking and local order parameters in Landau theory have failed.More precisely, a
bipartition of the quantum system is definedwhen theHilbert space factors into two parts .A B  = Ä The
bipartite FQH system can be implemented in both themomentum space and the real space of the two-
dimensional electron system. The former is called the orbital cut (OC) [28] and the latter the real space cut (RC)
[29].With a bipartition, a pure quantum state yñ∣ can be expressed in the formof the Schmidt decomposition

e , 6
i

i
A

i
B2iåy y yñ = ñ Ä ñx-∣ ∣ ∣ ( )

where i
Ay ñ∣ and i

By ñ∣ are orthonormal sets in A and B respectively and the value of ix in the Schmidt singular
values e 2ix- are the entanglement ‘energies’ in the entanglement spectrum [30]. Equivalently, the reduced
densitymatrix trA Br y y= ñá∣ ∣has eigenvalues e .i il = x- TheVonNeumann entropy

S tr ln ln e 7A A A
i

i i
i

i
i⎡⎣ ⎤⎦ å år r l l x= - = - = x- ( )

generally scales linearly with the area of the cut between parts A andB andwith a universal orderO(1) correction,
namely the topological entanglement entropy [31–33], i.e. S L .ta g= - The topological entanglement entropy

tg of the ground state for a fully gappedHamiltonian is one robustmeasure of quantum entanglement in a
topological phase in a two-dimensional system. In the FQH state, logt g = where 1  is the total quantum
dimension of the system. For the Laughlin state at 1 3,n = the quantumdimension is 3 = and therefore

0.549306.tg 
On the cylinder, we intend to divide the system into two equal subsystemswith the same number of orbitals

inOCor the same length in RC.However, the number of orbitals for theN-electron Laughlin state is
N N3 2orb = - which has the same parity asN. Then the bipartition of the orbitals should have an even–odd
effect, which can be defined as the orbital difference between A and ,B namely N NA B

orb orb-∣ ∣ is 0 for evenN
and is 1 for oddN. Intuitively, the effect of orbital difference should be diminishedwith increasing Lx due to the
local properties of the entanglement entropy, or inversely, it becomesmore clear in the small Lx or large Ly
region. This can be seen infigure 5(c). In the RC case, it is easy to comprehend that an even–odd effect exists,
especially in the thin cylinder limit. Taking theN= 2 andN= 3 thin cylinder crystal-like states as examples, their
wavefunctions are single Slater-determinant 2 1001TTY = ñ( ) ∣ and 3 1001001TTY = ñ( ) ∣ respectively. Then the
position of the RC cut for the state with evenN has zero electron density which induces a zero entanglement
entropy. On the other hand, there is an electron located at the position of the RC cut for the odd electronTT
state. Then the electron density reaches itsmaximumand the entanglement entropy saturates at a specific value,
which is the same as that for cutting a single electronwave function into two equal parts which is the classical
VonNeumann entropy S log 2 0.693147TT = ( ) which is shown infigure 5(d).When the cylinder is bipartite
along the y-direction, the Ly is actually the length of the cutting, or the ‘area’ between the two subsystems. Then
the topological entanglement entropy tg can be extrapolated from figures 5(c) and (d).We found in the case of
theOC that the data for the systemswith the same parity are sitting on the same curve as a function of Ly. For
large Ly, they can befitted linearly and the topological entanglement entropies for even and odd parities are

0.498tg  and 0.580tg  respectively. The exact value log 3tg = is in between them.Amore accurate

Figure 4.The ratio e e2 3 2 3G G as a function of Lx. The dotted line is plotted using equation (5) and the solid line is the fitted linewith
e .e e x l2 3 3 0.078 B

2G G » - ( ) The inset is the enlarged part with smaller Lx forN= 10 electrons. The numerical data deviates from the
asymptotic curve near L l4.3 .x

c
B

2 
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extrapolation can be obtained in theRC entanglement entropy shown infigure 5(d)where 0.546tg  , which is
close to the exact value. An interesting phenomenon is that both theOC andRC entanglement entropies saturate
at zero (log 2( ) for odd parity in RC)near L L .y x

c2 Therefore, we conclude that Lx
c2 is the length scale in the

y-directionwhere theCDWbehavior appears.
Infigures 5(a) and (b), we plot the bipartite entanglement withOC andRC as a function of Lx. TheOC

entanglement entropy has a peak at L l4.6x B in the thermodynamic limit as shown in the inset plot. In the RC,
the peak of the entanglement entropy is not as sharp as that in theOC since the entropywhile L 0x  decreases
very slowly. The position of the peak in the thermodynamic limit is L l3.7 0.1 .x B The error bar originates
from the strong even–odd effect in this region. The difference between theOC andRC can be explained by the
different width of the cuts in real space. TheOChas awider cut range and ismore sensitive to the change of Lx. It
is known that the entanglement entropy has a singularity at the critical point of theQPTdue to the divergence of
the quantumfluctuation.However, since no phase transition occurs while varying the Lx [21–23], the increment
of the entanglement entropy originates from the correlations between the two edges. Therefore, the two length
scales L l4.6x B and L l3.7x B forOC andRC respectively should be related to L l4.2 .x

c
B

2 

4. ElectronGreen’s function

The tunneling characteristic at the edge has long been regarded as an experimentalmethod bywhich tomeasure
the topological order of the FQH liquids. For tunneling froma three-dimensional Fermi liquid into the FQH
edge, chiral Luttinger liquid theory [34] leads to a non-Ohmic tunneling I−V relation I Vµ a with 1,a ¹ in
sharp contrast to theOhmic prediction of a Fermi-liquid-dominated edgewith 1.a = The electronGreen’s
function is defined as

G r r
r r

8
e ey y

y y
- ¢ =

Y Y ¢

á ñ

+

( )
( ) ( )

∣
( )

Figure 5.The entanglement entropy as a function of Lx inOC (a) andRC (b) and as a function of Ly inOC (c) andRC (d). The inset plot
in (a) and (b) are the scaling of the position of the peak in the entropy. The plot in (c) has an even–odd effect in the large Ly region and
the twofitting straight lines are L0.139 0.498 0.001y -  (even) and L0.155 0.580 0.004y -  (odd) respectively. The plot in (d) has
an even–odd effect in small Ly region and thefitting line for large Ly is L0.198 0.546 0.006.y - 
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where the reY+( ) and reY ¢( ) arefield operators which create and annihilate an electron at positions r and r¢
respectively. If we consider the tunneling path r r- ¢∣ ∣along the edge of the FQHdroplet, the edgeGreen’s
function shows a scaling behaviorwith 1a n= for long distance tunneling [35, 36].

In this section, we consider the electron tunneling from the left edge of the cylinder to the right one, namely
the electron correlation function between two anti-propagating edges as a function of Lx. The results are shown
infigure 6. It shows that theGreen’s function decreases dramatically when Lx is larger than the saddle point
which is the one-dimensional limit threshold value L l2.5 .x

c
B

1 = The data for the large tunneling distance near
L l10x B~ obeys a power law behavior with an exponent less than 20.- In the large Lx limit, obviously, the
Green’s function is zero in the Tao–Thouless state which is an insulator.We also checked the 1 5n = Laughlin
state and found that the electronGreen’s function has the same power law behavior in this region. Thuswe think
that the exponent in the large Lx region depends on the interaction between electrons. The electronGreen’s
function scales as a G L Lx xµ( ) which has a positive exponent of 1. Generally, the electronGreen’s function at
zero temperature decays as G r r 1~ a- -( ) [37, 38] in which 0a and 2a is the anomalous dimension of the
fermion operators. The case for 0a = corresponds to the normal Fermi liquid and 0a > is due to the
correction of the electron–electron interactionwhich is a characteristic behavior of a Luttinger liquid.On the
other hand, when L L ,x x

c1< the system enters into a one-dimensional phase which is described by theCalogero–
Sutherlandmodel. The reason that the correlation decreases with reducing Lx is due to the repulsion between
electrons, or strictly speaking, the electronGreen’s function drops to zero in the 1D limit.

5. Summary anddiscussion

In conclusion, we confirm that the quasihole tunneling amplitude in the cylinder geometry obeys the scaling
conjecture in equation (4) and the scaling behavior ismuch better than that on a disk. Generally the scaling
behaviorworks well when L Lx x

c2> where L l4.2x
c

B
2  for e 3 and L l5.2x

c
B

2  for e2 3with a difference due to
the different size of the quasiholes. The Lx

c2 can be explained as the threshold value of the edge–edge back
scattering between the two edges. It appears not only in the quasihole tunneling amplitude calculations, but also
in bipartite entanglement entropy. Therefore, the Lx

c2 is the smallest length scale that guarantees there are two
independent edges at the two ends of the cylinder. It should be the benchmark of the sample size in designing an
experimental setup of the quasiparticle tunneling and interference [39, 40].Moreover, we found another critical
value L l2.5 ,x

c
B

1  which is universal for different types of quasiholes. It can be explained as the critical width
evolving from a 2D system to 1D systemwhich is described by theCalogero–Sutherlandmodel. Bipartite
entanglement entropy has a singular behavior near Lx

c2 due to a contribution of the edge–edge back scatterings.
The topological entanglement entropy is extracted from theOC andRC entanglement entropies as a function of
Ly in afinite-sized system. The Lx

c1 plays the role of a saddle point in the single-particle Green’s functionwhere
the system enters into a one-dimensional description. The scaling exponent of theGreen’s function is 1while
approaching the 1D limit.We notice that the Lx

c1 is actually the correlation length of the Laughlin state as
mentioned in the iDMRG calculation [41]. Here we should admit that we have only considered the Laughlin
state of themodelHamiltonianwith hardcore interaction, or withV1 pseudopotential. For a realistic coulomb
interaction or the FQH state in higher Landau levels, we believe that similar behaviors exists whichmay atmost
have smallmodifications on the value of these length scales.

Figure 6.The log-log plot of the electronGreen’s function G Lx∣ ( )∣ for the Laughlin state for 5–12 electrons as a function of Lx. The
data in the large and small Lx regions can be fitted by Lx

20.8~ - and Lx~ respectively. L l2.5x B= is the saddle point between these two
phases.
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