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Abstract

Once the fractional quantum Hall (FQH) state for a finite-sized system is put on the surface of a
cylinder, the distance between the two ends with open boundary conditions can be tuned by varying
the aspect ratio . It scales linearly with increasing the system size and therefore has a larger adjustable
range than that on a disk. The previous study of the quasi-hole tunneling amplitude on a disk by Hu
etal (2011 New J. Phys. 13 035020) indicates that the tunneling amplitudes have a scaling behavior as a
function of the tunneling distance and the scaling exponents are related to the scaling dimension and
the charge of the transported quasiparticles. However, the scaling behaves poorly due to the narrow
range of the tunneling distance on the disk. Here we systematically study the quasiparticle tunneling
amplitudes of the Laughlin state in the cylinder geometry which shows a much better scaling behavior.
In particular, there are some crossover behaviors at the two length scales when the two open edges are
close to each other. These lengths are also reflected in the bipartite entanglement and the electron
Green’s function as either a singularity or a crossover. These two critical length scales of the edge—edge
distance, L and L2, are found to be related to the dimension reduction and back scattering point
respectively.

1. Introduction

The strongly correlated electron system reveals plenty of non-trivial properties beyond the single-particle
picture. The fractional quantum Hall effect (FQHE) [1] is a paradigm of strongly correlated system that occurs in
atwo-dimensional electron gas with a perpendicular magnetic field. The FQH state is one of the most studied
objects in condensed matter physics and has a topological protected ground state and non-trivial excitation. In
particular, the FQH states on the second Landau level, suchas v = 5/2 and v = 12/5, are expected to have
non-Abelian excitations and have potential applications in topological quantum computation [2—4].
Quasiparticle tunneling through narrow constrictions or point contacts that bring counter-propagating edges
close could serve as a powerful tool for probing both the bulk topological order and the edge properties of
fractional quantum Hall liquids. In particular, interference signatures from double point contact devices may
reveal the statistical properties of the quasiparticles that tunnel through them [5], especially the non-Abelian
ones [6, 7]. In disk geometry, a quasiparticle can tunnel from the center to the edge by a single particle tunneling
potential Ve = V6 () which breaks the rotational symmetry [8]. The ring shape of the Landau basis wave
function with angular momentum m/ onthe disk, i.e. ¢, (r) ~ r™e~ I"E/4 hasradius 2m Iz. Therefore the
tunneling distance d is tuned by inserting N, flux quantum, or N, quasiholes at the center, namely

d / Iz = \/ 2(Nor» + Ngn) — \/ 2N, where No, is the number of orbitals. The shape of the system evolves from
disk to annulus and finally to a quasi- 1D ring with increasing N. In the ring limit (or CFT limit) with d — 0, or
Ny, — o0, we found a universal analytical formula for the tunneling amplitudes of the bulk quasihole [9] and
the edge excitations [10]. On the other hand, the quasihole tunneling amplitudes were found to have a scaling
behavior as a function of the system size N, and the tunneling distance d. Interestingly, the fractional charge and

the scaling dimension appear in the exponents of the scaling function [9]. However, if we look carefully at the
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Figure 1. The sketch of the quasiparticle tunneling from one side to the other side of the cylinder. The tunneling path is given by a
potential Viynnet = V;6 (v) which haslength L,.

data of the tunneling amplitude in disk geometry, the scaling function does not work very well for small d which
was treated as a finite size effect [8] due to the fact that a limited number of electrons can be handled in the
numerical diagonalization. It is also hard to look into this region on a disk since Ny, — oo whiled — 0.

In this paper, we alternatively consider the physics properties of the FQH liquid in the cylinder geometry.
The cylinder has as its advantages the fact that the distance between the two ends is proportional to the system
size and can be tuned from zero to infinity smoothly by varying the aspect ratio v = L, /L, where L, is the
circumference on the side with periodic boundary and L, is the length of the finite cylinder with open
boundaries. As a comparison, in the disk geometry, the tunneling distance has a maximum which is the radius of
thesystem R = /2N, and d ~ Ny, / 2Ny, for Ny, >> Nypp,. This is very inconvenient when we want to look
at the small d region since numerous quasiholes or flux will be inserted at the center of the disk. On the other
side, when v — 0, namely in the thin cylinder limit, the two adjacent Landau orbitals have practically zero
overlap. In this case, the Hamiltonian is dominated by the electrostatic repulsion which contains the direct
interaction (¢, ¢,V |, ¢,,) and the exchange interaction (¢, ¢,| V' |4, ¢,)- The ground state is generally called a
charge density wave (CDW) state, or Tao—Thouless (TT) crystal state [11, 12] on the torus with the electronic
occupation pattern 1001001001 - - - in order to minimize the electrostatic repulsion energy. The wave function of
the FQH state [13] can be obtained by diagonalizing the model Hamiltonian with hardcore interaction, or the
Hamiltonian only with V| = 0 in the language of Haldane’s pseudopotential. The more interesting case is when
7 — ooor L, — 0o, tokeep the total area of the surface L, L, = 2713 N, invariant; to keep the total penetrated
flux invariant, L, then approaches zero. It means the two-counter-propagating edges at the two ends of the
cylinder are coming close to each other and the system finally evolves into a one-dimensional system. In this
case, because of the strong overlap of all the Landau orbitals, the Gaussian factors of each Landau wavefunction
are the same and can be erased by normalization. In this one-dimensional limit, the FQH wave function can be
described by the Jack polynomials and therefore all the results are the same as those that we did on the disk in the
ring limit. The Jack polynomial is one of the polynomial solutions for the Calogero—Sutherland Hamiltonian
[14] which can describe the Read—Rezayi Z;-parafermion states with a negative parameter o and a root
configuration (or partition). The Jack polynomial is a powerful method in studying the FQHE as it can construct
not only the model wave function for the Read—Rezayi series [ 15—17], but also the low-lying excitations [18, 19].
Another advantage of the cylinder geometry is its computational convenience compared with either the disk or
sphere geometries which were discussed in the density matrix renormalization calculation [20]. In this paper, we
reconsider the quasiparticle tunneling with cylinder geometry especially in the region of small tunneling
distance. Here the quasiparticle can tunnel from one edge to the other as sketched in figure 1. Thus the tunneling
distance equals the length L, of the system. We find a richer structure in this region and two characteristic length
scales appear not only in the quasiparticle tunneling, but also in the wavefunction overlap, bipartite
entanglement entropy and electron Green’s function.

The rest of this paper is organized as follows. In section 2, we consider the tunneling amplitude while varying
the length of the finite cylinder for e/3 and 2e/3 quasiholes in the Laughlin state. In section 3, the bipartite
entanglement entropy, both in orbital space and real space is discussed. The results of the electron Green’s
functions are discussed in section 4 and summaries and discussions are in section 5.

2. Quasiparticle tunneling for Laughlin state

For electrons on a cylinder with circumference L, in the y-direction in a magnetic field perpendicular to the
surface, the single electron wave function in the lowest Landau level is:
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inwhich k, = L_ﬂ- j, j = 0, £1, £2--- are the transitional momentum along the y-direction. Here the magnetic
y

length Iy = \//ic/eB hasbeen set as the unit. For a finite-sized system, the number of basis states or orbits, N,
equals the amount of magnetic flux quantum penetrating from the surface. Each orbit occupies an area 27l3.
Therefore, the length in the x-direction for a finite system is fixed with a given aspect ratio y, namely

L./l = Now2m /7.

To study the quasiparticle tunneling of the Laughlin state at v = 1/3, a quasihole with charge e/3 or 2¢/3 is
put on one edge of the cylinder as shown in figure 1. Here the model wavefunction for the Laughlin state can be
obtained by diagonalizing the model Hamiltonian with hardcore interaction, or just V| = 0 in the language of
the Haldane’s pseudopotential. It can also be obtained by using the Jacks with the so-called root configuration
1001001001---. The quasihole state for e/3 and 2¢/3 is just the translated state with one and two sites along the
x-direction respectively. Alternately, we can say a quasihole is inserted at the left edge of the finite cylinder which
is represented as roots 01001001001 --- and 001001001001 -- for e/3 and 2e/3 respectively in the Jack
polynomial description. A simple single-particle tunneling potential

Viunnel = Vi (}’)

is assumed. It describes a tunneling path along the x-direction and therefore breaks the translational symmetry
in the y-direction. Then the matrix element is (k| Viunnel |772), which is related to the tunneling of an electron from
the single particle state |m) to state |k}, is (set V; = 1)

vp(k, m) = <k‘ Viunnel m> = e_g(m_k)z. )

2w

2

Itis clear that v, (k, m) = ef(Lymf i;k) / * = e~@/W)*/4where dis the distance between the two Gaussians.
The many-body tunneling operator can be written as the summation of those for the single particle
T=V Zi 6 (). Then we can calculate the tunneling amplitude for many-body wave function I" = (W 7| W)
in which W) and [ ¥;,) are the ground state and quasihole state wave function respectively. In this section, we
just consider the tunneling amplitudes for the e/3 and 2e/3 quasiholes in Laughlin state at » = 1/3. The matrix
elements consist of contributions from the respective Slater-determinant components |m, ..., my) € Yyand
lky, -..s k) € W, There are nonzero contributions only when the two sets m, ..., my and ki ..., kyare
identical except for a single pair m’ and k’ with angular momentum difference k' — m’ = N for e/3 and

2
_‘u'NZ
S—¢e 1 and

k' — m' = 2N for 2¢/3 where Nis the number of electrons. Therefore, we have v;/

2
— Ny . . . C. .
V;e/ P=e U . The tunneling amplitude in the second quantization can be written as:

T = <\Ifqh‘7 ‘\Ifo> = Z<k1k2~~kn

i

6(%)C,me |m1m2~~mn>.

From equation (2), it is known that the tunneling amplitude decreases exponentially with increasing the
tunneling distance which is proportional to |m — k|. The distance of the quasiparticle tunneling of the many-
body state, or the length of the cylinder L,, is determined by the size of the system and the aspect ratio . For an
N-particle system at fixed filling factor, L, can be tuned from 0 to 00 by changing the aspect ratio . As with the
disk, numerous quasiholes were added at the center which makes the radius change from /2N, to 0. Witha
given L, the distance between two single-particle orbitals on the cylinder is a constant which makes the
tunneling distance scale proportional to the system size, i.e. d oc N on the cylinder compared with d o« N'/2 on
the disk. The linear relation guarantees a smooth change while varying ~.

Figures 2(a) and (b) show the tunneling amplitudes for the e/3 and 2¢/3 Laughlin quasiholes as a function of
the tunneling distance L,. When L, — o0, or v — 0, the system is in a thin cylinder limit and the ground state is
a crystal-like state in which electrons are separated; then the quasiparticle cannot tunnel from one side to
another,i.e.I' — 0. On the other side, when L, — 0, 0r 7 — 00, all the single particle orbitals collapse onto
each other which corresponds to the ring limit on disk, or the CFT limit in which case the geometry factor of the
many-body wave function can be neglected. Our previous studies [9, 10] show that the tunneling amplitude for
e/3 and 2e/3 quasiholes in the CFT limit for a system with N electrons can be exactly represented as:
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Figure 2. The tunneling amplitude I as a function of tunneling distance L, for e/3 (a) and 2¢/3 (b) Laughlin quasihole for system with
4—10 electrons. The data from different systems collapse into a single curve with a scaling function in equation (4). The exponents are
a®/3 = 2/3(c)and a*/> = —1/3 (d) for the two types of quasiholes. The inset figure shows the enlarged rescaled data for small L.
Some crossover points are labeled by arrows.
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where €2(1001001...01001) = 1 X 3 X 6 X ...and Q(i) = Q(u)2(N). For example,

[e/32) = Z% = 1.5and T2¢/3(2) = 2 x 2% = 0.6. The numbers in the fractions are the position
of the 1 sin equation (3). Formally, the tunneling amplitude for ¢/3 quasihole for Laughlin state has an
algebraic expression I'*/?(N) = %B (N, ﬁ), inwhich M = 1/v = 3 for the Laughlin state and the beta
function Bisdefinedas B(x, §) = I'(x)I"(8)/T'(x + B). Figures 2(a) and (b) show that the tunneling
amplitudes saturates exactly at these CFT limit values when L, — 0.In the medium region of L,, the tunneling
amplitude has a dramatic change from these CFT values to zero. The state in this region is close to the

Laughlin state, thus the signal of the decreasing of the quasihole tunneling amplitude can be seen as a
measurement of a phase transition (PT)-like from the thin cylinder state with zero tunneling amplitude to the
CFT limit with a finite tunneling amplitude. Here we should note that we use the terminology PT-like instead of
PT since there is actually no phase transition in the ground state while varying L,. The topological properties of
the ground state in the CFT limit are the same as those in the thin cylinder limit [21-23]. As shown in figures 2(c)

and (d), the data for different system sizes collapse into each other after the following scaling conjecture is
applied

ri(N, L) = T, N-a"e(aL./2¢h)’ (4)

The exponent af is related to the scaling dimension of the quasiparticleas a1 = 1 — 2A1. Ther = 1/3
Laughlin quasihole operator can be written as ¢, = €'/ V3 with a primary charge bosonic field ¢ in CFT.
Therefore, the scaling dimension for the e/3 and 2¢/3 quasiholes are A3 = 1/6 and A2/3 = 2/3 respectively
and then a/? = 2/3and a®*/3 = —1/3.1In disk geometry [8], the best scaling parameter for 2e/3 was

/3 = —0.4 which has alarge deviation from the theoretical prediction. We think this deviation should come
from the insufficient tunneling distance which is maximized at the radius of the disk. On the other hand, as we

4
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Figure 3. (a) The normalized tunneling amplitude as a function of tunneling distance for the e/3 (a) and 2e/3 quasihole (b). The inset
figures are their first-order derivations which have peaks at L ~ 4.2 both for e/3 (a) and 2e/3 (b) by extrapolating to N — oo.

discussed above, the tunnel amplitude data near d = 0 is missed due to the huge number of quasiholes needed to
be inserted at the center. On the cylinder, as shown in figures 2(c) and (d), the scaling conjecture of equation (4)
works perfectly when L, is larger than a specific value. The reason we are saying this is that if we enlarge the
rescaled data in the small L, region as shown in the inset figure, crossover behaviors from different systems occur
around L} ~ 2.5[gand L ~ 4.2]z as shown by the arrows in figure 2(c). The crossover at L' ~ 2.5[g also
remained the same in figure 2(d) for the 2e/3 quasihole. Here we should note that there is no crossover for larger
L, in figure 2(d). However, we observe that the scaling behavior starts to break down near L;Z/ o~ 5.2I3. The first
crossover at L' ~ 2.5l can be explained as a transition from a two-dimensional system to a one-dimensional
system. The 1D system corresponds to the Calogero—Sutherland model [24] which actually is the origin of the
holomorphic part of the FQH wave function, or the Jack polynomials [15-17]. The dimension reduction of the
FQH state was also considered in the composite fermion systems [25, 26]. Alternately, we can say that the system
isin the CFT limit while L, < L;. The second critical value L? ~ 4.2I for e/3 and L;Z/ ~ 52l for 2e/3 is the
transition point where the scaling behavior is broken down. This can be explained by the breaking down of
tunneling behavior between the two independent edges due to gluing the two anti-propagating edges together
when varying . Alternately, we can say that L2 is the length scale at which the two edges start to interact with
each other. When L, < L, there are back scatterings between the two anti-propagating edges. The different
values of L2 between the e/3 and 2¢/3 quasiholes should be from their size difference. Another way to
extrapolate the critial point L is by renormalizing the data by its CFT value from equation (3) as shown in
figure 3. Interestingly, the data for different sizes have a scaling-like behavior that collapses into one curve. The
inset plots in figure 3 are the first-order deviations of the normalized tunneling amplitudes. Again the first
deviations have peaks at L2 =~ 4.2]z both for ¢/3 and 2¢/3 by extrapolating to the thermodynamic limit with
N — oo.

On the other hand, besides the N-dependence of the tunneling amplitudes, equation (4) tells us that the ratio
of the two types of tunneling amplitude is expected to have an asymptotic behavior which depends on L,:

e/ 2 2 2 )
I;/; ~ ef[(ZLxﬁ) () ]/(21”) ~ e 0083(Lu/b) (5)

In figure 4, we plot the ratio '*¢/3/T'¢/ as a function of L, for a system with 6—10 electrons. Unlike the data ona
disk [8] in which there was a sudden change while the first quasihole was inserted at the center, the ratio on the
cylinder is smooth as a function of L,. The data in figure 4 can be fitted by a solid line with

['2¢/3/Te/3 n e~ 0078(/1)’ which is consistent with the expected behavior in equation (5). Compared to the disk,
the ratio of the tunneling amplitude for e/4 and e/2 for the Moore—Read state on the disk has an asymptotic
[¢/2/Te/4 e 0083@/15) which has a relatively large deviation from the expected behavior

[¢/2/T¢/* ~ e 0047(d/h)’ For the Laughlin state, the numerical and theoretical predictions are

['2¢/3/1e/3 g @ 005(d/lp)* T'26/3 /e/3 g @~ 0.083(d/I)’ respectively. Moreover, if we just plot the data for 10
electrons as in the inset of figure 4, it is shown that the deviation of the asymptotic behavior occurs near

L, = 4.3[g which s close to ~L2. This deviation also demonstrates that the tunneling has been affected by the
edge—edge interaction at this length scale.
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Figure 4. The ratio T'2/3/T2¢/3 as a function of L,. The dotted line is plotted using equation (5) and the solid line is the fitted line with
I2¢/3/Te/3 ny e=0078(</ 15 The inset is the enlarged part with smaller L, for N'= 10 electrons. The numerical data deviates from the
asymptotic curve near L2 >~ 4.3

3. Bipartite entanglement entropy

The idea that the quantum entanglement [27] in a bipartite system can describe different phases of matter has
emerged over the past few years. This approach has provided plenty of new insights, where traditional methods
based on symmetry breaking and local order parameters in Landau theory have failed. More precisely, a
bipartition of the quantum system is defined when the Hilbert space factors into two parts H = H, ® Hg. The
bipartite FQH system can be implemented in both the momentum space and the real space of the two-
dimensional electron system. The former is called the orbital cut (OC) [28] and the latter the real space cut (RC)
[29]. With a bipartition, a pure quantum state | 1)) can be expressed in the form of the Schmidt decomposition

V) =2 e Pvf) ® Iv7), (©)

where |1/') and [t)7) are orthonormal sets in H, and H; respectively and the value of ¢, in the Schmidt singular
values e~&/2 are the entanglement ‘energies’ in the entanglement spectrum [30]. Equivalently, the reduced
density matrix p, = trg|1)) (1| has eigenvalues \; = e~%. The Von Neumann entropy

Sp=— tr[pA In pA] =Y Nl X =Y ¢ges %)
1 1

generally scales linearly with the area of the cut between parts A and B and with a universal order O(1) correction,
namely the topological entanglement entropy [31-33],i.e. S = aL — =,. The topological entanglement entropy
7, of the ground state for a fully gapped Hamiltonian is one robust measure of quantum entanglement in a
topological phase in a two-dimensional system. In the FQH state, v, = log D where D > 1is the total quantum
dimension of the system. For the Laughlin state at v = 1,3, the quantum dimension is D = /3 and therefore
7 = 0.549306.

On the cylinder, we intend to divide the system into two equal subsystems with the same number of orbitals
in OC or the same length in RC. However, the number of orbitals for the N-electron Laughlin state is
Nyip = 3N — 2 which has the same parity as N. Then the bipartition of the orbitals should have an even—odd
effect, which can be defined as the orbital difference between H, and Hg, namely | Nz, — N2, |is 0 for even N
and s 1 for odd N. Intuitively, the effect of orbital difference should be diminished with increasing L, due to the
local properties of the entanglement entropy, or inversely, it becomes more clear in the small L, or large L,
region. This can be seen in figure 5(c). In the RC case, it is easy to comprehend that an even—odd effect exists,
especially in the thin cylinder limit. Taking the N =2 and N = 3 thin cylinder crystal-like states as examples, their
wavefunctions are single Slater-determinant Wrr(2) = |1001) and Wrr(3) = |1001001) respectively. Then the
position of the RC cut for the state with even N has zero electron density which induces a zero entanglement
entropy. On the other hand, there is an electron located at the position of the RC cut for the odd electron TT
state. Then the electron density reaches its maximum and the entanglement entropy saturates at a specific value,
which is the same as that for cutting a single electron wave function into two equal parts which is the classical
Von Neumann entropy Sty = log(2) = 0.693147 which is shown in figure 5(d). When the cylinder is bipartite
along the y-direction, the L, is actually the length of the cutting, or the ‘area’ between the two subsystems. Then
the topological entanglement entropy ~, can be extrapolated from figures 5(c) and (d). We found in the case of
the OC that the data for the systems with the same parity are sitting on the same curve as a function of L,. For
large L,, they can be fitted linearly and the topological entanglement entropies for even and odd parities are
7, = 0.498 and ~, =~ 0.580 respectively. The exact value , = log /3 is in between them. A more accurate

6
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Figure 5. The entanglement entropy as a function of L, in OC (a) and RC (b) and as a function of L, in OC (c) and RC (d). The inset plot
in (a) and (b) are the scaling of the position of the peak in the entropy. The plot in (c) has an even—odd effect in the large L, region and
the two fitting straight lines are 0.139L, — 0.498 + 0.001 (even) and 0.155L,, — 0.580 =+ 0.004 (odd) respectively. The plotin (d) has
an even—odd effect in small L, region and the fitting line for large L, is 0.198L,, — 0.546 =+ 0.006.

extrapolation can be obtained in the RC entanglement entropy shown in figure 5(d) where 4, >~ 0.546, which is
close to the exact value. An interesting phenomenon is that both the OC and RC entanglement entropies saturate
atzero (log(2) for odd parityin RC) near L, ~ L2. Therefore, we conclude that L is the length scale in the
y-direction where the CDW behavior appears.

In figures 5(a) and (b), we plot the bipartite entanglement with OC and RC as a function of L,. The OC
entanglement entropy has a peak at L, =~ 4.6/ in the thermodynamic limit as shown in the inset plot. In the RC,
the peak of the entanglement entropy is not as sharp as that in the OC since the entropy while L, — 0 decreases
very slowly. The position of the peak in the thermodynamic limitis L, ~ 3.7 £ 0.1lz. The error bar originates
from the strong even—odd effect in this region. The difference between the OC and RC can be explained by the
different width of the cuts in real space. The OC has a wider cut range and is more sensitive to the change of L,. It
is known that the entanglement entropy has a singularity at the critical point of the QPT due to the divergence of
the quantum fluctuation. However, since no phase transition occurs while varying the L, [21-23], the increment
of the entanglement entropy originates from the correlations between the two edges. Therefore, the two length
scales L, ~ 4.6lg and L, ~ 3.7z for OC and RC respectively should be related to L> ~ 4.25.

4, Electron Green’s function

The tunneling characteristic at the edge has long been regarded as an experimental method by which to measure
the topological order of the FQH liquids. For tunneling from a three-dimensional Fermi liquid into the FQH
edge, chiral Luttinger liquid theory [34] leads to a non-Ohmic tunneling I— Vrelation I o« V*with @ = 1,in
sharp contrast to the Ohmic prediction of a Fermi-liquid-dominated edge with &« = 1. The electron Green’s
function is defined as

(0| W@ we)|v)

G(r —
(1)
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Figure 6. The log-log plot of the electron Green’s function |G (L) | for the Laughlin state for 5-12 electrons as a function of L. The
data in the large and small L, regions can be fitted by ~L_ 23 and ~L, respectively. L, = 2.5l is the saddle point between these two
phases.

where the ¥, (r) and W, (1) are field operators which create and annihilate an electron at positions r and r/
respectively. If we consider the tunneling path |[r — r’/| along the edge of the FQH droplet, the edge Green’s
function shows a scaling behavior with & = 1/v forlong distance tunneling [35, 36].

In this section, we consider the electron tunneling from the left edge of the cylinder to the right one, namely
the electron correlation function between two anti-propagating edges as a function of L,. The results are shown
in figure 6. It shows that the Green’s function decreases dramatically when L, is larger than the saddle point
which is the one-dimensional limit threshold value L{ = 2.515. The data for the large tunneling distance near
L, ~ 10l obeys a power law behavior with an exponent less than —20. In the large L, limit, obviously, the
Green’s function is zero in the Tao—Thouless state which is an insulator. We also checked the v = 1/5 Laughlin
state and found that the electron Green’s function has the same power law behavior in this region. Thus we think
that the exponent in the large L, region depends on the interaction between electrons. The electron Green’s
function scalesasa G (L,) & L, which has a positive exponent of 1. Generally, the electron Green’s function at
zero temperature decays as G (r) ~ r~!~%[37,38]in which o > 0 and a/2 is the anomalous dimension of the
fermion operators. The case for & = 0 corresponds to the normal Fermi liquid and o« > 0is due to the
correction of the electron—electron interaction which is a characteristic behavior of a Luttinger liquid. On the
other hand, when L, < L, the system enters into a one-dimensional phase which is described by the Calogero—
Sutherland model. The reason that the correlation decreases with reducing L, is due to the repulsion between
electrons, or strictly speaking, the electron Green’s function drops to zero in the 1D limit.

5. Summary and discussion

In conclusion, we confirm that the quasihole tunneling amplitude in the cylinder geometry obeys the scaling
conjecture in equation (4) and the scaling behavior is much better than that on a disk. Generally the scaling
behavior works well when L, > L> where L2 ~ 4.2l3 for e/3 and L2 ~ 5.2l for 2¢/3 with a difference due to
the different size of the quasiholes. The L;? can be explained as the threshold value of the edge—edge back
scattering between the two edges. It appears not only in the quasihole tunneling amplitude calculations, but also
in bipartite entanglement entropy. Therefore, the L2 is the smallest length scale that guarantees there are two
independent edges at the two ends of the cylinder. It should be the benchmark of the sample size in designing an
experimental setup of the quasiparticle tunneling and interference [39, 40]. Moreover, we found another critical
value L} ~ 2.5lg, which is universal for different types of quasiholes. It can be explained as the critical width
evolving from a 2D system to 1D system which is described by the Calogero—Sutherland model. Bipartite
entanglement entropy has a singular behavior near L due to a contribution of the edge—edge back scatterings.
The topological entanglement entropy is extracted from the OC and RC entanglement entropies as a function of
L, inafinite-sized system. The L' plays the role of a saddle point in the single-particle Green’s function where
the system enters into a one-dimensional description. The scaling exponent of the Green’s function is 1 while
approaching the 1D limit. We notice that the L} is actually the correlation length of the Laughlin state as
mentioned in the iDMRG calculation [41]. Here we should admit that we have only considered the Laughlin
state of the model Hamiltonian with hardcore interaction, or with V; pseudopotential. For a realistic coulomb
interaction or the FQH state in higher Landau levels, we believe that similar behaviors exists which may at most
have small modifications on the value of these length scales.
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