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We use exact diagonalization to study the quantum phases and phase transitions when a single species of
fermionic atoms at a Landau level filling factor νf = 1 in a rotating trap interact through a p-wave Feshbach
resonance. We show that under a weak pairing interaction, the system undergoes a second-order quantum phase
transition from a νf = 1 fermionic integer quantum Hall (FIQH) state at positive detuning, to a νb = 1

4 bosonic
fractional quantum Hall (BFQH) state at negative detuning. However, when the pairing interaction increases,
a new phase between them emerges, corresponding to a fraction of fermionic atoms staying in a coherent
superposition of a bosonic molecule state and an unbound pair. The phase transition from the FIQH phase to the
new phase is of second order and that from the new phase to BFQH phase is of first order.

DOI: 10.1103/PhysRevB.95.241106

Introduction. Topological phases of matter are of tremen-
dous current interest. Equally important, but perhaps less stud-
ied thus far (especially on the experimental side), are quantum
phase transitions (QPTs) between different topological phases.
This is because tuning the system through such QPTs requires
great control of certain knobs, which are not always available in
electronic condensed matter systems. Recently, there has been
intense activities in topological phases realized in trapped cold
atom systems [1–5]. The advantages of these systems include
the availability of qualitatively different types of interparticle
interactions, and the great abilities experimentalists have to
control them. This allows for detailed studies of QPTs in such
systems. Among such activities are attempts to realize quantum
Hall (QH) states [6,7], which were the very first topological
phases discovered.

In electronic systems, QPTs between different QH phases
are usually driven by changing magnetic field, and disorder
plays a dominant role at these transitions. In fact, the field-
driven transition can often be mapped to a transition at a fixed
field but driven by disorder strength instead. The presence of
disorder, especially when combined with an electron-electron
interaction, makes such transitions extremely hard to study
theoretically. Over the years theorists instead have studied
possible QH transitions driven by interactions without disorder
[8–10]; in most cases these require an additional periodic
potential that is not available in electronic systems.

It was pointed out by Yang and co-workers [11,12] that
in cold atom systems, one can realize some of the closely
related QH transitions with neither disorder nor a periodic
potential. Instead, what drives the transitions are Feshbach
resonances (FRs), across which two fermions bind into a
bosonic molecule. The two phases involved are a fermionic
integer QH phase on the atomic side (positive detuning), and
a bosonic fractional QH phase on the molecular side (negative
detuning). One such phase transition [11] driven by s-wave
Feshbach resonance has been confirmed numerically [13].
The other transition from a νf = 1 fermionic integer quantum
Hall (FIQH) phase to a νb = 1

4 bosonic fractional quantum
Hall (BFQH) was proposed by Barlas and Yang [12], where
they studied this phase transition using quantum field theory

methods, and argued that it is a second-order QPT in the
(2+1)-dimensional Ising universality class.

In this Rapid Communication we use the exact diagonal-
ization (ED) method to study the model of Barlas and Yang
[12]. The purpose of such a numerical study is threefold. First,
while field theory approaches may determine the possible
phases, they cannot determine the actual location of the phase
boundary; the latter needs to be determined by calculations
based on microscopic models. Second, while field theory
can tell if a second-order phase transition is possible, in
general it does not guarantee it must happen in a specific
microscopic model; in fact, first-order transitions are always
possible. Lastly, since field theory only keeps certain long-
wavelength/low-energy degrees of freedom, it might miss
certain phases. Indeed, through our numerical work, we
(i) determine the phase diagram quantitatively, (ii) confirm
that the direct transition from FIQH phase to BFQH phase is
of second order, and (iii) perhaps most importantly, we find
an intermediate phase between FIQH and BFQH phases in
certain regions of the phase diagram.

To investigate this QPT, we consider a single species
of fermions confined to two dimensions and under either a
rotation or synthetic gauge field, whose effects mimic that of a
strong magnetic field. We focus on the case where the Landau
level filling factor νf = 1. When the system is tuned through
p-wave FR, two fermions can pair up and form a p-wave
bosonic molecule with twice the “charge.” We assume the
Landau level spacing is large enough such that we can assume
all particles are confined to their respective lowest Landau
level. The system can thus be described by the following
Hamiltonian on a disk (which is the geometry of our choice for
a finite-size numerical study, where total angular momentum
is a good quantum number due to rotational symmetry),

H = δ
∑
m

(
b†mbm − 2f †

mfm

)

+
( ∑

m1,m2,m3

gm1,m2,m3b
†
m1

fm2fm3 + H.c.

)
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+
∑

m1,m2,m3,m4

v(0)
m1,m2,m3,m4

b†m1
b†m2

bm3bm4

+
∑

m1,m2,m3,m4

v(2)
m1,m2,m3,m4

b†m1
b†m2

bm3bm4 , (1)

where {mi} are angular momentum quantum numbers of the
lowest Landau level single-particle orbitals, with bm (b†m) and
fm (f †

m) the corresponding annihilation (creation) operators
for bosons and fermions. The first term above is the chemical
potential term in which δ is the detuning corresponding to the
energy difference between a pair of fermions and a boson;
this term determines whether the atoms should pair up to form
molecules or stay unbound energetically.

The second term depicts the pairing interaction
through p-wave FR. The matrix element gm1,m2,m3 =
g δm1,M 〈1,M|m2,m3〉, where g represents the strength of the
pairing interaction in the p-wave channel (corresponding
to width of the p-wave FR), |m2,m3〉 is a two-body state
with the two particles having angular momentum m2 and
m3, respectively, and |1,M〉 is a two-body state with their
relative angular momentum equal to 1 and center-of-mass
angular momentum M . This matrix element indicates that
only those pairs of fermions whose relative angular momentum
�m = 1 can pair up, and the consequent composite boson has
an orbital angular momentum m1 = M = m2 + m3 − 1. This
term conserves the angular momentum because the p-wave
bosonic molecule also carries an internal momentum +1. The
matrix element 〈1,M|m2,m3〉 is a special case of

〈�m,M|m1,m2〉
≡ 1√

(2π )4 2(�m+M+m1+m2) �m! M! m1! m2! l8

×
∫

d2z1

∫
d2z2

(
z∗

1 − z∗
2√

2l

)�m(
z∗

1 + z∗
2√

2l

)M

×
(

z1

l

)m1
(

z2

l

)m2

e
− |z1 |2+|z2 |2

2l2

=
√

�m! M!

(2π )4 2�m+M m1! m2!

×
∑

n

(−1)�m−n Cm1
n C

m2
�m−n δ�m+M,m1+m2 , (2)

where za ≡ xa + iya is the complex coordinate of the ath
particle on a disk in the lowest Landau level d2za = dxadya ,
l is the corresponding magnetic length, and �m is the relative
angular momentum of a pair. The sum of n is summing
over all natural numbers bounded at max (0,�m − m2) � n �
min (�m,m1). Note that the bosonic magnetic length square l2

b

is half of the fermionic magnetic length square l2
f (l2

b = l2
f /2)

in our model due to the doubled charge of the bosons.
The last two terms correspond to repulsive interactions

between bosons. In order to stabilize the BFQH state
with νb = 1

4 , we consider the zeroth order and the sec-
ond order of Haldane pseudopotentials [14]. The matrix
element v(α)

m1,m2,m3,m4
= v(α) ∑

M 〈m1,m2|α,M〉〈α,M|m3,m4〉,
where v(α) is the strength of the αth order Haldane pseudopo-
tential. In our calculation, we simply use v(0) = v(2) = 1.

In this model, the total charge (Ntot) and the total angular
momentum (Mtot) are good quantum numbers. The total charge
is the sum of the number of fermions and twice the number of
bosons,

Ntot = 2Nb + Nf =
∑
m

(2b†mbm + f †
mfm). (3)

The prefactor 2 in the bosonic part comes from the fact that
each bosonic molecule has twice the charge of the fermion.
And the total angular momentum is the sum over all angular
momenta of orbitals occupied by bosons and fermions plus the
number of bosons since each boson has one internal angular
momentum,

Mtot =
∑
m

[(m + 1)b†mbm + mf †
mfm]. (4)

In our numerical calculation, we use these two quantum num-
bers to label the sector in which we perform our calculations.

There are two limits of this Hamiltonian in Eq. (1). For
δ > 0 and |δ| � g, a boson costs more energy than an unbound
pair of fermions, so the ground state will be dominated by
fermions and the system forms a FIQH state at νf = 1, which
does not require interactions between fermions to stabilize
(and that is the reason why we do not include a fermion
interaction in our model). On the other hand, when δ < 0 and
|δ| � g, it is energetically favorable for fermions to pair into
bosonic molecules. The resultant boson filling factor is νb = 1

4 ,
resulting in a Laughlin-type BFQH state with the boson-boson
interaction we introduced. We can easily distinguish between
these two phases by inspecting their low-energy spectra, as we
now turn to.

In Fig. 1, we show the energy spectra for a system with
Ntot = 10 given ten fermionic orbitals and 20 bosonic orbitals
with Mtot from 44 to 48. Under a FIQH limit, the system will
have the lowest-energy state only when it forms a FIQH state
in which there are no bosons and all fermionic orbitals are
occupied, namely, Mtot = Mgs, with

Mgs = Ntot(Ntot − 1)

2
. (5)

Mgs is 45 in this case for Ntot = 10. Because we only give the
least number of fermionic orbitals, which is ten here for the
FIQH state, no edge states should show up at Mtot > Mgs. In
Figs. 1(a) and 1(b) with δ = 6 (FIQH limit) at g = 0.6 (weak
pairing) and g = 3 (strong pairing), the lowest-energy states
indeed appear at Mtot = 45 and the expectation values of boson
numbers in the lowest-energy states 〈Nb〉 are close to zero as
well. Furthermore, the first excited state is a state with one
boson. The energy difference between the ground state and
the lowest-energy excited states, mainly due to the chemical
potential term, is about 3δ (losing two fermions and gaining
one boson), as found in Figs. 1(a) and 1(b).

In the BFQH limit, if the system which has Nb bosons
forms a BFQH state with ν = 1

4 , it will have a Laughlin wave
function as

ψν= 1
4
(z1,z2, . . . ) =

⎡
⎣ Nb∏

i<j

(
zi − zj

)4

⎤
⎦e

−
N∑

k=1

|zk |2
4 l2

. (6)
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FIG. 1. The energy spectra for a system with Ntot = 10 fermions,
given ten fermionic orbitals and 20 bosonic orbitals. The eight lowest-
energy states are plotted for each Mtot. The ground state at Mtot =
Mgs = 45 is separated by a large gap from all excited states for
(a) g = 0.6 and δ = 6 and (b) g = 3 and δ = 6, which are under the
FIQH limit. We find a set of low-lying states for Mtot � Mgs = 45
for (c) g = 0.6 and δ = −6 and (d) g = 3 and δ = −6, which are
under the BFQH limit. These correspond to the Laughlin-like state at
Mtot = Mgs = 45 and edge states for Mtot > Mgs = 45. The number
of these states indicated in the plots matches the expected number of
edge states. 〈Nb〉’s indicate the expectation values of boson numbers
in the corresponding states pointed by small arrows.

The total angular momentum is composed of two parts:
the angular momentum of the orbitals occupied by bosons
and the internal angular momentum of bosons, Mtot = 4 ×
Nb(Nb − 1)/2 + Nb. In this limit, Nb = Ntot/2, so Mtot =
Mgs, the same as that in the FIQH state. When Mtot < Mgs,
there is no state with lower energy than the Laughlin state at
Mgs. However, when Mtot > Mgs, edge states [15] degenerate
with the Laughlin state exist. Therefore, by counting and
comparing the numbers of low-lying states with the numbers
of edge states of Laughlin-type states at various Mtot, we can
demonstrate the system forms a BFQH state. In Figs. 1(c)
and 1(d) with δ = −6 at g = 0.6 and g = 3 we demonstrate
this is indeed the case. Notice that the low-lying states are
no longer exactly degenerate because of the existence of the
pairing interaction. Besides, the boson number in the low-lying
state at Mtot = 45 is very close to 5, the maximum number of
bosons, as expected. In Fig. 1(d), we see that 〈Nb〉 has a bigger
deviation from 5. This is due to the fluctuation induced by
the strong pairing interaction, namely, fermions have a bigger
matrix element to go back and forth between the paired and
unpaired states. This is also the reason why the average boson
number is bigger in the FIQH state with larger g, as shown in
Fig. 1(b). The other thing to notice is in the BFQH regime the
low-energy excited states still have essentially all particles as

FIG. 2. Plot of the energy gap (� ≡ E1 − E0, where E0 and E1

are the energies of the ground state and the first excited state) vs δ

for systems with Ntot = 8, 10, 12, and 14 at Mgs for (a) g = 0.6.
There is one gap-closing point for each curve. Inset: Blowup of the
gap-closing region. (b) For g = 2.5. There are two gap-closing points
for each curve.

bosons, and as a result their excitation energies in Figs. 1(c)
and 1(d) are much smaller than 3|δ| and determined by the
boson-boson interaction instead.

In our model, for a specific Ntot, we need at least Ntot

fermionic orbitals and 2Ntot − 3 bosonic orbitals, respectively,
in order to access the appropriate ground states in the FIQH
and BFQH limits. Furthermore, Mgs is the same in these two
limits. Therefore, we will focus on the Mgs sector in our
calculations from now on using the minimum orbital numbers
mentioned above, unless noted otherwise. To identify the phase
boundaries, we drive a system from the FIQH phase to the
BFQH phase by changing δ at various g. Since quantum phase
transitions between different gapped phases must involve gap
closing, we plot the gap � of systems in Figs. 2(a) and 2(b) as
functions of δ, where the gap is defined as the energy difference
between the first excited state and the ground state in the
Mgs sector. Four system sizes with Ntot = 8, 10, 12, and 14
are studied. There is one gap-closing point at g = 0.6 [weak
pairing regime, Fig. 2(a)], indicating a single phase boundary
separating the FIQH phase and the BFQH phase. At closer
inspection [see the inset of Fig. 2(a)] the gap is not exactly
zero in these finite-size calculations, but instead approaches
zero with increasing system sizes, indicating the transition
is due to a level anticrossing, consistent with a second-order
QPT predicted by Barlas and Yang [12]. Unfortunately, the
limited system sizes and obvious fluctuations that are present
do not allow us to perform finite-size scaling to extract critical
exponents.

The situation is quite different at g = 2.5 (strong pairing
regime). In this case the gap closes twice, implying that the
systems undergo two phase transitions in the strong pairing
regime. We provide a phase diagram in Fig. 3, based on the
locations of the gap-closing points. As predicted by Barlas and
Yang [12], there is a direct transition from the FIQH state to
the BIQH state in the weak pairing regime (small g). However,
it is clear that an unexpected new phase shows up between the
FIQH phase and the BFQH phase in the strong pairing regime
(large g). We now study the properties of this new phase, and
phase transitions involving it.

As discussed earlier, one can distinguish between FIQH
and BFQH states by the average number of bosonic molecules
in the ground state 〈Nb〉. To gain intuition into the new phase,
we inspect 〈Nb〉 for both the ground and first excited states.
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FIG. 3. Phase diagram for systems with Ntot = 8, 10, 12, and 14.
At small g, in the region δ > 0 is the FIQH phase; in the region δ < 0
is the BFQH phase. At large g, the coherent Bose-Fermi mixture
phase appears between the FIQH and BFQH phases.

Figure 4(a) shows that for Ntot = 14 at g = 0.6 (weak pairing
regime), 〈Nb〉’s in the ground state and the first excited state
increase monotonically and smoothly from the FIQH state
toward the BFQH state, consistent with a second-order phase
transition occurring at the critical point δc. In the strong
pairing regime in Fig. 4(b), 〈Nb〉 still changes smoothly at
δc1. However, 〈Nb〉’s in the ground state and the first excited
state have jumps at δc2 with opposite signs. This suggests a
first-order phase transition triggered by a crossing between
the ground and first excited states at δc2. Motivated by this, we
examine the energy spectrum for the Ntot = 14 case at g = 2.5,
as shown in Fig. 5. It clearly shows that a high-energy state
comes down and eventually becomes the ground state after a
sequence of level crossings with other lower-energy states as
δ varies from δc1 toward δc2. This suggests the phase transition
occurring at δc2 is a first-order phase transition, triggered by
crossing of the Laughlin-like state with the ground state of the
new phase between the BFQH state and the FIQH state.

Returning to the boson number expectation value, we expect
the ground state in the intermediate phase contains a finite
fraction of fermions that stay in a coherent superposition of
bound molecular state and unbound scattering state, even when
δ is quite negative. Such a superposition state gains energy
from the pairing term, and when g is much larger than v(0)

and v(2), the pairing term dominates, and the energy gain

FIG. 4. The expectation values of bosons 〈Nb〉 in the ground
state and the first excited state vs δ for the system with Ntot = 14 at
(a) g = 0.6 and (b) g = 2.5. The vertical blue lines locate the critical
points.

FIG. 5. Energy spectra for the system with Ntot = 14 at g = 2.5.
�E = Ei − E0, where Ei denotes the energy of the ith state and E0

is the ground-state energy.

from such coherence dominates the energy cost from putting
fermions in the unpaired state. The physics of this intermediate
phase is perhaps most clearly revealed by considering the
limit g → ∞. In this limit there is no way to tell whether
a fermionic atom is in a scattering (open channel, unbound)
state, or forms a bound (closed channel, molecular) state with
another fermion, because the g term in the Hamiltonian forces
all p-wave fermion pairs to be in a coherent superposition
of these two states. For this reason we call it the coherent
Bose-Fermi mixture phase. A natural variational wave function
for the ground state with total angular momentum Mtot =∑

{M}(M + 1) is

ψ =
∏
{M}

(
uMb

†
M + vM

∑
m1,m2

〈m1,m2|1,M〉f †
m1

f †
m2

)
|0〉, (7)

where {M} is a set of boson angular momenta, with uM

and vM variational parameters that describe the coherence
between the boson and fermion pair states. Since many
different configurations of {M} exist, the system is most likely
compressible. Of course, the actual ground state in the Mtot

sector can be written as linear superpositions of the state above
with different configurations of {M} [16].

To test the analysis above, we examine the energy spectrum
for Ntot = 14 of an extreme case with g = 1 and all δ

and v(0) and v(2) equal to 0 at various Mtot in Fig. 6(a).
We see the lowest-energy state locates at Mgs, which is
91 in this case, just as the neighboring BFQH and FIQH
phases. The fermion fraction of the total conserved charge
is about 0.6 and independent of the system size, as shown
in Fig. 6(b). This supports the argument that the g term
enforces the ground state to be a superposition of a scattering
state and a bound state with uM ≈ vM . On the other hand,
the gap |�E| decreases significantly as system size Ntot

increases; it plausibly extrapolates to zero upon approaching
the thermodynamic limit. This strongly suggests that the
coherent Bose-Fermi mixture phase is compressible.

We performed a systematic numerical study of the topo-
logical phase transition from an integer quantum Hall (FIQH)
state made of fermionic atoms, to a bosonic fractional quantum
Hall (BFQH) state made of bosonic molecules, driven by
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FIG. 6. (a) Energy spectra for Ntot = 14 with 14 fermionic
orbitals and 25 bosonic orbitals which are the least orbital numbers
and parameters g = 1, δ = 0, and v(0) = v(2) = 0. (b) Energy gap
between the lowest-energy state and the first excited state |�E| vs
system size on the left axis and average fermion fraction

〈Nf 〉
Ntot

vs
system size on the right axis. The black dashed line extrapolates
the energy gap to the origin. The fermion fraction is independent of
system size.

a p-wave Feshbach resonance. The phase diagram can be
separated into two regimes: weak pairing and strong pairing. In

the weak pairing regime corresponding to narrow resonance,
we demonstrate the existence of a second-order quantum
phase transition from the FIQH phase to the BFQH phase,
which is consistent with earlier theoretical work [12]. In the
strong pairing regime corresponding to wide resonance, a new
phase appears which contains a finite fraction of fermions
that stay in a coherent superposition of bound molecular
states and unbound scattering states. According to the energy
spectra and the behavior of 〈Nb〉, we conclude that the
phase transition from the FIQH state to the new phase is
of second order; from the new phase to the BFQH phase
it is a first-order transition due to the energy level crossing
behavior.
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