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We study the trapping of Abelian anyons �quasiholes and quasiparticles� by a local potential �e.g., induced
by an atomic force microscopy tip� in a microscopic model of fractional quantum Hall liquids with long-range
Coulomb interaction and edge confining potential. We find, in particular, that at Laughlin filling fraction �

=1 /3, both quasihole and quasiparticle states can emerge as the ground state of the system in the presence of
the trapping potential. As expected, we find that the presence of an Abelian quasihole has no effect on the edge
spectrum of the quantum liquid, unlike in the non-Abelian case �X. Wan et al., Phys. Rev. Lett. 97, 256804
�2006��. Although quasiholes and quasiparticles can emerge generically in the system, their stability depends
on the strength of the confining potential and the strength and the range of the trapping potential. We discuss
the relevance of the calculation to the high-accuracy generation and control of individual anyons in potential
experiments, in particular, in the context of topological quantum computing.

DOI: 10.1103/PhysRevB.77.075331 PACS number�s�: 73.43.Lp, 73.43.Cd, 71.10.Pm

I. INTRODUCTION

Shortly after the discovery of the fractional quantum Hall
effect,1 Laughlin2 realized that electrons in such a system
form an incompressible quantum liquid with excitations of
fractional charge.3,4 These exotic particle excitations5,6 are
dubbed �Abelian� anyons. Interchanging two anyons, one ob-
tains a phase factor ei� for the wave function, where � is
neither an integral multiple of 2� as required by bosons nor
an odd multiple of � as required by fermions. The presence
of these particles with fractional statistics is an indication of
topological phases.7 So far, experiments have confirmed the
fractional charge,8–10 but the direct observation of the
fractional statistics remains questionable.11–16 Recent
experiments11,12 demonstrated the so-called superperiods in
the conductance oscillations in a fractional quantum Hall
quasiparticle interferometer, which appear to be consistent
with fractional statistics.13,14 However, some theoretical
works15–17 raised subtleties in the interpretations.

A second family of anyons is believed to exist in the
fractional quantum Hall state at �=5 /2. The even-
denominator state is believed to be a p-wave paired state,
known as the Moore-Read state or the Pfaffian state, which
supports half-flux quantum vortex excitations.18 Such par-
ticle excitations carry e /4 charge each and, when inter-
changed, not just add a phase factor to the wave function but
make the system evolve unitarily in its degenerate �or
quasidegenerate for finite systems� ground state manifold.
They are dubbed non-Abelian anyons, which are also specu-
lated to exist at �=12 /5. The existence of the non-Abelian
anyons, although not confirmed by experiments yet, is of
vital importance to topological quantum computing.19–22

In theory, the wave functions of quasihole excitations can
be written explicitly in analytic functions for both the Laugh-
lin case and the Moore-Read case. They are also exact eigen-
states of some special Hamiltonians with short-range two-
body and three-body interactions, respectively. Exact
diagonalization of finite systems has fruitfully revealed some

of these quasihole and/or quasiparticle states.23 In systems
with Coulomb interaction, such ground state descriptions ap-
pear to be sufficient even for electrons on a Corbino disk
geometry in Abelian cases,24 as well as for electrons on a
disk geometry in the non-Abelian case at �=5 /2.25 In the
latter case, the change of the edge spectrum in the presence
of an odd number of non-Abelian anyons at the origin im-
plies the non-Abelian statistics of such excitations. In addi-
tion, up to four non-Abelian quasiholes have been induced
and oriented tetrahedrally on a sphere, which results in two
nearly degenerate states with very similar charge density pro-
file �presumably a topologically protected qubit�.26

To achieve fault-tolerant quantum computing in the topo-
logical fashion, one needs to be able to create individual,
paired, or a small cluster of anyons. One of the simplest
experimental approaches is probably to use a biased atomic
force microscopy �AFM� tip to create and to trap anyons.
One may then easily move the anyons localized at the tip to
realize braiding to fulfil computation. However, the feasibil-
ity of creating anyons at an AFM tip has not yet been sys-
tematically studied even on the numerical level. In an earlier
work by one of the authors and collaborators,25 it is demon-
strated that a short-range repulsive local potential �as pro-
duced by a sharp AFM tip� can induce both +e /4 and +e /2
quasiholes, depending on the potential strength, in a �=5 /2
system. However, a mixture of long-range Coulomb interac-
tion and short-range three-body interaction is used, and it is
not clear whether negatively charged quasiparticles can be
created in a similar fashion.

In this work, we study the excitation and trapping of both
quasiholes and quasiparticles with a local potential in a mi-
croscopic model of fractional quantum Hall droplets with
both long-range Coulomb interaction and realistic edge con-
fining potential. We focus on the Laughlin primary filling
fraction �=1 /3, although the approach can be applied to
other filling fractions, including the intriguing �=5 /2
case,25,27 to obtain similar results. We find that both posi-
tively charged quasiholes and negatively charged quasiparti-

PHYSICAL REVIEW B 77, 075331 �2008�

1098-0121/2008/77�7�/075331�7� ©2008 The American Physical Society075331-1

http://dx.doi.org/10.1103/PhysRevB.77.075331


cles can be excited generically by a finite-range tip potential
with appropriate sign and strength. We confirm that the edge
spectrum of the system is not affected by the presence of a
single quasihole, characteristic of its Abelian nature. Our re-
sults suggest that it is quite possible to trap individual
anyons, as needed in topological quantum computer propos-
als. We also discuss the stability of anyons when the strength
of the confining potential varies.

The rest of the paper is organized as follows. In Sec. II,
we consider the short-range hard-core potential, which gen-
erates the Laughlin state and the single-quasihole state as
exact zero-energy ground states. We consider long-range
Coulomb interaction in Sec. III, where we apply tip poten-
tials of �-function, Gaussian, and exponential forms. We
summarize our results and discuss the relevance to experi-
ments in the context of topological quantum computing in
Sec. IV.

II. HARD-CORE INTERACTION

In this section, we study the two-dimensional electron
system on a disk at filling fraction �=1 /3 with short-range
hard-core interaction between electrons in the lowest Landau
level �0LL�. In Haldane’s pseudopotential language, Vm
=�1,m. The Laughlin state2 at the primary filling factor �
=1 /3,

�1/3�z1 ¯ zN� = �
i�j

N

�zi − zj�3 exp�−
1

4�
i=1

N

�zi�2	 , �1�

is the exact ground state with zero energy in the subspace
with total angular momentum, Mtot=ML=3N�N−1� /2, for N
electrons in at least Norb=3N−2 orbitals. In fact, it is the
zero-energy ground state with the smallest allowed angular
momentum; other zero-energy states �for larger Norb� are
known as edge states. We plot the density profile of the
Laughlin state for ten electrons in 28 orbitals using palette-
mapped three-dimensional plot in Fig. 1�a� and, for compari-
son, along the radial direction in Fig. 1�b�.

As Laughlin pointed out, the state with a single quasihole
at � can be written as

�1/3
qh ��;z1 ¯ zN� = �

i=1

N

�zi − ���1/3�z1 ¯ zN� . �2�

In the disk geometry, � can be placed at the origin to preserve
rotational symmetry. Obviously, this is a zero-energy ground
state in the M1qh=3N�N−1� /2+N momentum subspace for
Norb�3N−2. In general, there can be additional zero-energy
states in the same momentum subspace, with the wave func-
tions being the Laughlin state multiplied by symmetric poly-
nomials of order N. Such degeneracy can be lifted either by
limiting Norb=3N−1 or by the addition of an impurity poten-
tial HW=Wc0

+c0 at the m=0 orbital. In Figs. 1�c� and 1�d�, we
plot the density profile of the quasihole wave function. A
density deficiency around the origin is clearly visible, indi-
cating the presence of a quasihole roughly the size of one
magnetic length lB.

On the other hand, the quasiparticle state of the corre-
sponding Laughlin state is of some ambiguity. There is no

zero-energy state obtained in the exact diagonalization at
Mtot=M1qp=3N�N−1� /2−N because the excitation gap of
the Laughlin liquid is finite. Here, it is hard to compare it
with the variational quasiparticle wave function,

�1/3
qp ��,z1 ¯ zN�

= �
i=1

N 
e−�zi�
2/4�2

�

�zi
− �*�e�zi�

2/4
�1/3�z1 ¯ zN� , �3�

proposed by Laughlin, which is not known as the exact so-
lution of any simple Hamiltonian. We assume that, like the
quasihole state, the quasiparticle state is the ground state of
the Hamiltonian of interest at the appropriate angular mo-
mentum M1qp. Here, we plot the density profile of the ground
state as the candidate for the quasiparticle state in Figs. 1�e�
and 1�f�.

We plot the accumulated difference of the electron occu-
pation numbers �i=0

m �n�i�=�i=0
m �nqh,qp�i�−nL�i�� between

quasihole and/or quasiparticle state �with electron occupation
number nqh or nqp� and the Laughlin state �with electron
occupation number nL� in Fig. 2. The dotted line in this fig-
ure is the average value, i.e., 1 /3 �or −1 /3�, for the quasi-
particle �or quasihole� state. This confirms that there are
	e /3 charged excitations in a Laughlin liquid of �=1 /3. In
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FIG. 1. �Color online� Electron density profiles of the ground
states of electrons in the 0LL with hard-core interaction, which
generates the Laughlin wave function �Eq. �1�� and the Laughlin
quasihole wave function �Eq. �2�� as eigenstates. �a� and �b� show
the density profile of the Laughlin state. �c� and �d� show the den-
sity profile of the quasihole state �1QH�, which is the ground state
in the presence of an external potential W0c0

+c0 at W0=0.1. �e� and
�f� show the density profile of the candidate �see text for detail� for
the quasiparticle state �1QP� as in Eq. �3�.
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the case of the hard-core potential, the size of the −e /3
charged quasiparticle ��3lB� is larger than that of the +e /3
charged quasihole ��lB�.

A similar density-profile plot of the Laughlin quasihole
and quasiparticle states in spherical geometry has been re-
ported in an earlier numerical work.23 Studies on the Laugh-
lin quasiparticle excitations in the disk geometry with long-
range Coulomb interaction �in the presence of neutralizing
background charge to be realistic� have long been absent.

III. COULOMB INTERACTION

In this section, we study the excitations in a Laughlin
condensate of N electrons with Coulomb interaction, con-
fined by uniform neutralizing background charge �on a disk
of radius R� at a distance d above the electron layer. We use

the disk geometry with the symmetric gauge A� = �− By
2 , Bx

2
�;

the single-particle wave function 
m in the lowest Landau
level is


m�z� = �2�2mm!�−1/2zme−�z�2/4, �4�

where z=x+ iy is the complex coordinate in the electron
layer. Projected to the lowest Landau level, the Hamiltonian
in the second quantization language reads

HC =
1

2�
mnl

Vmn
l cm+l

+ cn
+cn+lcm + �

m

Umcm
+ cm, �5�

where cm
+ �cm� creates �annihilates� an electron at the mth

orbital. Here, Vmn
l are Coulomb matrix elements,

Vmn
l =� d2r1� d2r2
m+l

* �r�1�
n
*�r�2�

e2

�r12

n+l�r�2�
m�r�1� ,

�6�

and Um the background confining potential,

Um =
Ne2

�R2�
� d2r�

�
R

d2�
�
m�r���2

��r� − �� �2 + d2
. �7�

In order to study the quasiparticle and quasihole excita-
tions, we include an external local potential HW, for example,
created by an AFM tip. So the complete Hamiltonian is

H = HC + HW. �8�

In the following, we will consider three different forms
of HW: �i� a short-range potential at the origin of the disk
HW=W0c0

+c0; �ii� a Gaussian potential HW=Wg�m
�exp�−m2 /2s2�cm

+ cm; and �iii� an exponential potential HW

=We�m exp�−m /��cm
+ cm. Throughout the paper, the unit of

energy is e2 /�lB. We would like to point out that the energy
of the ground state depends on the strength and the form of
the potential, but the qualitative results remain the same.

A. Short-range potential at origin

A short-range potential can be produced by a very sharp
AFM tip. By sharp, we mean that the range of the tip poten-
tial on the two-dimensional electron gas is smaller than one
magnetic length, the size of a single-particle wave function
in the lowest Landau level. In this case, we can model the
potential by HW=W0c0

+c0, located at the origin in our disk
geometry. A previous study25 has applied the short-range po-
tential to create a single +e /4 quasihole and two +e /4 quasi-
holes �or a+e /2 quasihole� in a model of the fractional quan-
tum Hall liquid at �=5 /2 with Coulomb interaction and an
edge confining potential.

To begin with, we apply the same short-range potential
HW to the electron liquid at �=1 /3. We present the results of
a system of N=8 electrons in 26 orbitals �large enough so
that edge excitations have low enough energies�. The back-
ground charge is still confined to a disk of R=�2N /�=�48,
corresponding to the lowest 24 orbitals, at a distance d
=0.5lB above the electron layer. We expect that the ground
state of the Laughlin condensate has a total angular momen-
tum ML=3N�N−1� /2=84, which is found to be the case for
zero and small W0. When we increase W0 above 0.26	0.01,
the total angular momentum of the global ground state jumps
from 84 to 92, indicating the excitation of a+e /3 quasihole.
The density profile of the quasihole state is similar to that
found for the hard-core potential �Figs. 1�c� and 1�d��, in
which the electron density approaches zero at the origin.

In Fig. 3, we compare the low-energy excitations of the
system with and without the quasihole excitation. We iden-
tify the edge excitations, labeled by black solid bars, follow-
ing the approach developed by one of the authors and his
collaborators.28 We observe that in energy relative to the
ground state, the edge spectrum looks almost identical with
and without the quasihole, implying the Abelian nature of the
quasihole. This contrasts to the case of the Moore-Read state,
where the presence of a+e /4 quasihole changes the fermi-
onic edge excitations. The numbers of the edge states �in-
cluding the ground state� are 1, 1, 2, 3, and 5 for �M
=0–4, as expected by the chiral boson edge theory.29,30

The short-range potential is useful to generate a single
+e /3 quasihole if the edge confinement is not too strong.
However, since it only affects the local potential at a single
orbital, a second quasihole cannot be induced, since one can-
not deplete more than �on average� 1 /3 charge in a single
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FIG. 2. �Color online� Accumulated difference of the electron
occupation number �i=0

m �n�i� between the quasiparticle state �1QP�
or the quasihole state �1QH� and the Laughlin state shown in Fig. 1.
The difference oscillates around 1 /3 �−1 /3� for the quasiparticle
�quasihole� state, indicating the emergence of a charge −e /3 quasi-
particle �+e /3 quasihole�.
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orbital in this case. For the same reason, the short-range po-
tential does not support a single quasiparticle �charged
−e /3�, as one can see from Fig. 2 that a quasiparticle occu-
pies several orbitals, unlike a quasihole. Therefore, we pro-
ceed to study local potentials with a longer range.

B. Gaussian-shaped potential

We now considered the Gaussian-shaped potential HW
=Wg�m exp�−m2 /2s2�cm

+ cm, i.e., the potential has a value
Wg exp�−m2 /2s2� on the mth orbital. The width of the poten-
tial is s, while the strength of the potential Wg. In the limit of
s→0, the Gaussian potential evolves into the short-range �
potential discussed in the previous subsection.

For fixed s=2 and d=0.5lB, we vary Wg to study the
change of the total angular momentum of the global ground
state. For example, in a system of N=10 electrons in 30
orbitals, we find that the total angular momentum Mtot jumps
from ML=3N�N−1� /2=135 to M1qh=3N�N−1� /2+N=145
at Wg=0.16	0.01, indicating the presence of one quasihole
at the origin. For an attractive potential, Mtot drops from
ML=135 to M1qp=3N�N−1� /2−N=125 at Wg=
−0.13	0.01, indicating the emergence of a quasiparticle at
the origin. Figure 4 shows the value of Wg at which Mtot
changes for systems with six to ten electrons. We find that
the threshold values for the generation of one quasihole or
one quasiparticle approach a constant value of roughly
	0.15 as the system size increases. It is not surprising that
the threshold value is of the same energy scale as the bulk
energy gap, but it also depends on the detail of the potential.

Figure 5 shows the electron density profiles for �a� the
Laughlin condensate, �b� the one-quasihole state for Wg
=0.2, and �c� the one-quasiparticle state for Wg=−0.2. The
density accumulation or depletion at the origin indicates the
presence of a quasiparticle or quasihole. Compared to the
case of the hard-core potential, the quasihole is slightly

larger, while the quasiparticle is smaller with a well-defined
peak at the origin. Therefore, in the more realistic case with
Coulomb interaction �and a not too narrow tip�, the quasihole
state and the quasiparticle state have roughly the same per-
turbation to the Laughlin condensate except for the opposite
signs, suggesting a quasiparticle-quasihole symmetry.

Since the quasiparticle state we obtain for the Gaussian
potential in systems with Coulomb interaction cannot be eas-
ily compared with the variational wave function �Eq. �3��, we
want to make sure that it is not a stripe phase, which arises
commonly in systems with Coulomb interaction. In Fig. 5�c�,
we find that the electron density of the quasiparticle state has
a large value around the origin and edge. A stripe phase
of N=10 electrons in 30 orbitals with a somewhat similar
density distribution and the same total angular momentum
can be represented by a binary string ��SP�
= �110000000000111111110000000000� �a Slator determi-
nant�, in which each digit specifies the corresponding single-
electron orbitals �from 0 to 29� being occupied �1� or not �0�.
Therefore, we wish to answer the question how close the
ground state with Mtot=125 is to the stripe phase. For this,
we plot the lowest four excitation energies �energy difference
between the lowest four excited states and the ground state in
the subspace of M =125� as a function of Wg in Fig. 6�a�.
Obviously, there is no crossing and/or anticrossing between
the ground state �which we identify as the quasiparticle state�
and the first excited states as �Wg� increases. This is very
different from the behavior of the next three excited states,
which can get very close in energy. We further calculated the
overlaps between the lowest two energy states and the stripe
state as a function of Wg in Fig. 6�b�. While the overlap is
increasing for the ground state, it is only about 5% for Wg
�Wg

c =−0.13 when the ground state in the M =125 subspace
becomes the global ground state. We therefore conclude that
the ground state is unlikely the stripe state.

We extend our calculation to a grid on the area defined by
−2�Wg�2 and 0
s
3.5 for the Gaussian potential
Wg�m exp�−m2 /2s2�cm

+ cm. We choose the strength of edge
confinement by placing the background charge at d=0.5lB
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FIG. 3. �Color online� Low-lying energy spectra obtained by
exact diagonalization for eight electrons interacting via Coulomb
repulsion in 26 orbitals in the 0LL �a� with and �b� without a quasi-
hole at the origin. Edge states are marked by black solid bars, while
bulk states by blue dotted bars. The quasihole at the origin is ex-
cited by a short-range potential W0c0

+c0 with W0=0.3. The similarity
of the two edge spectra confirms the Abelian nature of the
quasihole.
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�stronger confinement� and d=1lB �weaker confinement�.
The results of the ground state for eight electrons are plotted
in Fig. 7. Generically, we can divide the parameter space into
five regions: the Laughlin condensate �Mtot=3N�N−1� /2�,
the one-quasihole state �Mtot=3N�N−1� /2+N�, the one-
quasiparticle state �Mtot=3N�N−1� /2−N�, beyond one-
quasihole state �ground states with Mtot�3N�N−1� /2+N�,
and beyond one-quasiparticle state �ground states with Mtot

3N�N−1� /2−N�. We have also done the calculation for
N=10 with similar results, but on a coarser grid. In particu-
lar, we do observe the ground state with Mtot=3N�N−1� /2
+2N=155 for N=10, consistent with the angular momentum
for a two-quasihole state. We do not find any global ground
state with Mtot=3N�N−1� /2−2N=115 �consistent with that
of a two-quasiparticle state�, but at 117. One might tempt to
speculate this as one of the two quasiparticles moving away
from the origin. Nevertheless, in such small systems, it is
unnecessary and most likely unreliable to emphasize mul-
tiple quasiparticle and quasihole excitations, so we simply
mark the regions with Mtot�3N�N−1� /2+N and �Mtot


3N�N−1� /2−N by “beyond 1QH” and “beyond 1QP,” re-
spectively, and do not proceed further.

The main difference between d=0.5lB and d=1.0lB occurs
along the boundaries of quasiholes, not along the quasiparti-
cle boundaries. This, we believe, is due to the fact that for a
fixed number of electrons, the quasihole states �not the quasi-
holes themselves� have larger size than the quasiparticle
states, thus more susceptible to the edge confinement. The
difference is more evident at smaller s �sharper tips�. In par-
ticular, a � tip can excite a quasihole in the case of d
=1.0lB, but not in the case of d=0.5lB for not too large Wg.
This, as illustrated in Fig. 7, suggests that a finite width s
�2lB may be more robust for the excitation of quasiholes
and quasiparticles.

C. Exponential-shaped potential

In this section, we discuss the exponential-shaped poten-
tial HW=We�m exp�−m /��cm

+ cm. In real space, this corre-

sponds to a Gaussian potential V�z�=Wg
re−�z�2/2�2

, which may
not be too difficult to prepare in experiments. Explicitly, by
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FIG. 5. �Color online� Electron density profiles of the ground
states of electrons in the 0LL with Coulomb interaction, obtained
by numerical diagonalization. We consider a system of ten electrons
in 30 orbitals and apply a Gaussian potential HW=Wg�m

�exp�−m2 /2s2�cm
+ cm with s=2 to trap a quasihole or a quasiparti-

cle. These ground states are �a� the Laughlin condensate at Wg=0,
�b� the one-quasihole state at Wg=0.2, and �c� the one-quasiparticle
state at Wg=−0.2.
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FIG. 6. �Color online� Evolution of �a� the excitation energies
of the lowest four excited states and �b� the overlaps of
the lowest two states with the stripe phase ��SP�
= �110000000000111111110000000000� at total angular momentum
M =125, for a system of ten electrons in 30 orbitals with Coulomb
interaction and a Gaussian potential Wg�m exp�−m2 /2s2�cm

+ cm with
s=2. The neutralizing confining charge is located at a distance d
=0.5lB above the electron layer. The lack of ground state energy
level crossing or anticrossing and the relatively small overlap with
the strip state suggest that the ground state can be interpreted as the
one-quasiparticle state, rather than the strip state.
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projecting the real-space potential into the lowest Landau
level, we obtain the matrix elements,

�
m�V�
m� =
Wg

r

2�2mm!
�

0

�

exp −
lB
2 + �2

2�2

�z�2

lB
2

�z�2md2z

lB
2m+2

= Wg
r� �2

lB
2 + �2�m+1

= Wee
−m/�, �9�

where the decay length is �=1 / ln�1+ lB
2 /�2� and the effective

strength We=Wg
r�2 / ��2+ lB

2�. Again, �
m� is the lowest Lan-
dau level wave function with angular momentum m.

After applying the exponential potential HW=We�m
�exp�−m /��cm

+ cm with �=1 / ln 2 �or �= lB in real space�, we
are also able to trap a single quasihole or a single quasipar-
ticle. Again, we consider a system of ten electrons in 30
orbitals, with neutralizing confining charge located at a dis-
tance d=0.5lB above the electron layer. The electron density
profiles for the one-quasihole state and the one-quasiparticle
state are plotted in Fig. 8. The density profiles look very
similar to those for the Gaussian potential discussed in the
previous section �Fig. 5�. Like the Gaussian case, the quasi-
particle state and the quasihole state have roughly the same
density perturbation �but with opposite signs� to the Laughlin
condensate.

IV. CONCLUSION AND DISCUSSION

To summarize, we study the trapping of quasiholes and
quasiparticles by a local potential �e.g., induced by an AFM
tip� in a microscopic model of fractional quantum Hall liq-
uids with short-range hard-core interaction or long-range
Coulomb interaction with an edge confining potential due to
neutralizing background charge. We find, in particular, that at
the Laughlin filling faction �=1 /3, both quasihole and qua-
siparticle states can be energetically favorable for the ground
state of the Coulomb system for tip potentials of various
shapes and strengths. The presence of the Abelian quasihole
has no effect on the edge spectrum of the quantum liquid,
unlike in the non-Abelian case when fermionic excitations
are present.

Although quasiholes and quasiparticles can emerge ge-
nerically in the system, its stability depends on the strength
of the confining potential and the strength and the range of
the tip potential. Experimentally, the quantum Hall plateau at
�=1 /3 was found in a high magnetic field ��15 T�.1 In this
case, the magnetic length lB�70 Å. Based on our micro-
scopic calculation, we estimate an optimal range of the tip
potential to be 140 Å. The size falls in the right range of
AFM tip size under current technology. The Laughlin con-
densate in the context of topological quantum computing is
of less interest due to its Abelian nature, although it can be
used for topological quantum memory. Nevertheless, it is
much easier to model in numerical studies than the non-
Abelian Moore-Read state,27 and the even more complicated
Read-Rezayi �parafermion� states.31 We expect that the re-
sults found here can help for the excitation and trapping of
quasiholes or quasiparticles in the Moore-Read case in future
experiments. In the Moore-Read case at filling fraction of

FIG. 7. Ground state phase diagram for the system of eight
electrons in 24 orbitals with Coulomb interaction in the presence of
the Gaussian tip potential with strength Wg and width s. The con-
fining charge is located at distances �a� d=0.5lB and �b� d=1lB

above the electron layer. Generically, we can divide the parameter
space into five regions: the Laughlin condensate, the one-quasihole
�1QH� state, the one-quasiparticle �1QP� state, beyond 1QH state,
and beyond 1QP state, according to their corresponding ground
state total angular momenta. The difference between �a� and �b�
suggests that the energy of the quasihole state is more susceptible to
edge confinement.
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FIG. 8. �Color online� Electron density profiles for �a� the one-
quasihole state �Wc=0.28� and �b� the one-quasiparticle state �We

=−0.2� for the exponential potential HW=We�m exp�−m /��cm
+ cm

with �=1 / ln 2 �or �= lB in real space�. The system has ten electrons
in 30 orbitals with Coulomb interaction. The neutralizing confining
charge is located at a distance d=0.5lB above the electron layer.
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5 /2, a smaller magnetic field of �5 T is usually applied.
Thus, with a longer magnetic length, we can have even wider
tips, which should not be a technical challenge. The trapping
of anyons might also be realized in optical lattices of
atoms32,33 or polar molecules.34

With the well-known difficulties of the exact diagonaliza-
tion method in highly entangled systems such as the frac-
tional quantum Hall liquids, the search for the ground states
with a few parameters is a time-consuming job. The Moore-
Read case is even more complicated, since the even-
denominator state has a smaller excitation gap and is com-
peting with stripe phases.27 One might wish to develop more
efficient numerical methods to approach the ground state
properties. One development in recent years is the applica-
tion of density-matrix renormalization group method35–38 to
the fractional quantum Hall systems. We implement the
method in the disk geometry with results in excellent agree-
ment with exact diagonalization in small systems.39 How-

ever, we find that the time to reach convergence �especially
near the origin� in larger systems is impractically long for the
extensive search for the ground states discussed in the cur-
rent paper.
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