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We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix
renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We
provide convergence benchmarks based on model Hamiltonians known to possess exact zero-energy
ground states, as well as an analysis of the number of sweeps and basis elements that need to be
kept in order to achieve the desired accuracy. The ground state energies of the Coulomb Hamiltonian
at ν = 1/3 and ν = 5/2 filling are extracted and compared with the results obtained by previous DMRG
implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and
suggests that this boundary condition is particularly suited for the application of the DMRG method to
the FQHE.
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1. Introduction

Strongly correlated systems in low dimensions are among the
most active areas in the condensed matter physics. These sys-
tems contain a large number of particles that interact strongly
with each other and cannot be understood in a single-particle pic-
ture. A paradigm of strongly correlated systems is the fractional
quantum Hall effect [1] (FQHE) that occurs when a system of two-
dimensional electrons partially fills one of the Landau levels in a
strong perpendicular magnetic field. Since the kinetic energy is
frozen in a partially-filled Landau level, the electron–electron in-
teraction is the only relevant term in the Hamiltonian and leads to
the emergence of non-perturbative ground-states with fractional-
ized charge [2] and anyonic, Abelian and non-Abelian [3], statistics.

Due to the non-perturbative nature of the FQHE, numerical
methods have played a crucial role since the original work of
Laughlin [2]. In particular, exact diagonalization (ED) presented it-
self as a versatile and extremely powerful tool that unraveled many
of the complexities of FQH systems [4,5]. The popularity and quick
success of ED was due to the specific correlations of FQH sys-
tems that rapidly minimize the finite-size effects with increasing
the number of particles in the simulation. Highly accurate predic-
tions of the system’s properties in the thermodynamic limit could
be obtained by considering systems as small as 10 particles [5].
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As it is well known, the main bottleneck of ED calculations lies
in the exponential explosion of the size of the many-body Hilbert
space as the number of particles grows. While for the simplest FQH
fractions, such as the Laughlin ν = 1/3 state [2], admittedly all
essential physical properties can be obtained in the systems attain-
able by ED, in the majority of other cases ED is not sufficient. This
is particularly striking in case of spin degree of freedom, or SU(4)
internal symmetry if we consider FQHE in graphene [6]. However,
similar constraints arise even in the spin-polarized case of the non-
Abelian Read–Rezayi sequence [7], where electrons are believed to
pair into k � 2-body clusters. Therefore, a non-Abelian Ne-particle
state at level k is likely to have finite-size effects comparable to the
Laughlin-like state of Ne/k particles. Hence, to address the prop-
erties of the non-Abelian ground-state it is desirable to consider
systems at least k times as large. It is therefore of essential im-
portance to develop new numerical methods that can reach larger
system sizes than ED.

One such method is the density matrix renormalization group
(DMRG), invented by White [8] in 1992. DMRG has been quite
successful over the last decade when it was applied to one-
dimensional systems such as the Heisenberg spin chains and the
one-dimensional Hubbard model. In essence, it is a variational
method to get the ground state and the low-lying energy states
of the system. The algorithm contains two main parts. One is
called the infinite size algorithm which grows the system to a big
size, and the other one is referred to as the finite-size algorithm,
which makes the ground state converge. The only approximation
in the DMRG method is the truncation of the Hilbert space ac-
cording to the eigenvalues of the reduced density matrix for the
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subblock which is used to construct the large system. The more
states are kept in the reduced density matrix, the higher the ac-
curacy one can achieve in principle. It is generally believed that
the entanglement entropy of a subregion often grows like the
boundary area of the subregion [9]. A larger entanglement en-
tropy, or larger correlation, means that one needs to keep more
states to achieve a sufficient accuracy. The success of DMRG in the
one-dimensional systems was ensured by the low entanglement
between the two subregions which only have a point surface be-
tween two blocks.

On the other hand, a FQH system is two-dimensional and thus
the success of the DMRG method in FQHE is by no means obvious.
However, in a Landau gauge, the one-body orbitals are Gaussian-
localized and provide a mapping to an effective “one-dimensional”
chain with the long-range Coulomb interaction. This motivates an
attempt to apply the DMRG to the FQHE system. The first such at-
tempt was done for the periodic boundary conditions (torus geom-
etry) by Shibata and Yoshioka [10], mostly considering compress-
ible, stripe and bubble, phases in higher Landau levels. Feiguin et
al. [11] developed a DMRG scheme for the ground state and excited
states in the spherical geometry for larger systems at filling factors
ν = 1/3 and ν = 5/2. Hard-core interactions were also studied on
thin cylinders in an unpublished work [12], and for bosonic sys-
tems in Ref. [13]. Most recently, Zhao et al. [14] developed an
independent DMRG implementation that by far exceeds the previ-
ous attempts. In this study, the maximal system size was Ne = 24
for ν = 1/3 and Ne = 34 for ν = 5/2. The independent implemen-
tations [10–14] appear to differ significantly from each other in
various aspects, in particular in the number of basis states that are
kept, ranging from a few hundred in the torus geometry, up to
Nkeep = 20 000 states in Ref. [14].

In this Letter, we report on the systematic study of the FQHE
system in the spherical and cylinder geometry based on our in-
dependent implementation of the DMRG method. We address the
well-studied FQH systems at fillings ν = 1/3 and ν = 5/2 with the
goal of providing a detailed benchmark of the DMRG algorithm
and comparing it with the previous implementations. New phys-
ical results obtained with the current DMRG implementation will
be presented elsewhere [15].

The remainder of this Letter is organized as follows. In Section 2
we analyze the convergence of the V 1 Haldane pseudopotential [4,
5] Hamiltonian on the sphere that is analytically known to yield
the Laughlin wavefunction as an exact zero-energy ground state. In
the case of Coulomb interaction, we evaluate the ground state en-
ergy for ν = 1/3 and ν = 5/2 fillings corresponding to the Laugh-
lin [2] and Moore–Read [3] states. The ground-state energies per
particle are extrapolated to the thermodynamic limit using finite-
size scaling techniques. In Section 3, we draw some comparisons
with the cylinder geometry, which is an alternative geometry for
studying the FQHE that so far has scarcely been used [16]. The con-
vergence for the V 1 Hamiltonian is found to be significantly faster
on the cylinder than on the sphere, suggesting that this bound-
ary condition might be promising for further studies of the FQHE.
Discussion and conclusions are given in Section 4.

2. Sphere geometry

We study a model for spin-polarized electrons moving on the
surface of a sphere, with a magnetic monopole 2S placed in the
center to generate a radially-symmetric magnetic field perpendicu-
lar to the surface [4]. In strong magnetic fields, electrons in general
completely fill (n − 1) single particle Landau levels which are con-
sidered to be “inert”, and all dynamics comes from a partially-filled
nth Landau level. Any two-body Hamiltonian, projected to this nth
Landau level (neglecting the excitations to higher Landau levels),
Fig. 1. (a) The convergence of the ground-state energies for the hard-core V 1 Hamil-
tonian at ν = 1/3 as a function of the finite size sweeping number when keeping
4000 states in the subsystem. (b) The ground-state energy as a function of the num-
ber of kept states. We perform 10 finite-size sweeps for each point. The energies are
on a logarithmic scale.

can be written in the usual second-quantized form,

H = 1

2

∑

m1,m2,m3,m4

〈m1m2|V |m3m4〉a+
m1

a+
m2

am3am4 . (1)

In the spherical geometry, quantum numbers mi ’s label the
z-component of the angular momentum for particle i which
takes values: −S,−(S − 1), . . . , S . The one-body orbitals are the
monopole harmonics [4] Y Slm which generalize the usual spherical
harmonics obtained for S = 0. When we target a specific many-
body state, we also need to adjust the flux 2S to take into account
the so-called shift that determines the total number of the avail-
able orbitals. This means that 2S = 1

ν Ne +S , where S is a universal
number that characterizes each many-body state, e.g. S = −3 for
the Lauglin and Moore–Read state.

Because of rotational and translational invariance, any two-body
interaction matrix element 〈m1m2|V |m3m4〉 can be decomposed
as [18]

〈m1m2|V |m3m4〉

=
2S∑

J=0

J∑

M=− J

〈Sm1, Sm2| J M〉〈Sm3, Sm4| J M〉V (S)
J /R, (2)

where V J are the Haldane pseudopotentials [4] and R = √
S�B is

the radius of the sphere in terms of the magnetic length �B =√
h̄/eB . The first two terms in the above equation are the Clebsch–

Gordan coefficients on the sphere. When symmetry is taken into
account, at filling ν = 1/3 the Lanzcos method can diagonalize the
sparse Hamiltonian matrix for up to 14 electrons, corresponding to
the Hilbert space dimension of ∼ 108.

As shown by Haldane [5], the advantage of the pseudopotential
formulation is that model wavefunctions can be defined as ground
states of the truncated Hamiltonians. For example, the Laughlin
wavefunction is obtained as an exact zero-energy ground state for
the hard-core interaction with V 1 > 0, Vm>1 = 0, with an exci-
tation gap controlled by the magnitude of V 1. From the compu-
tational point of view, V 1 Hamiltonian is nearly as sparse as the
full Coulomb Hamiltonian, but it serves as a universal reference to
test the accuracy of the DMRG code for large systems because the
ground-state energy is known to be exactly zero for any system
size.

In Fig. 1 we show the ground-state energy convergence for dif-
ferent system sizes as a function of the finite-size sweep number
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Fig. 2. Ground-state energy per particle for the ν = 1/3 state up to 20 electrons as
a function of size of the system. Solid points are the results of exact diagonaliza-
tion and the blank circles represent DMRG results. The two fitting curves are with
(upper) and without (lower) rescaling the magnetic length as described in Refs. [19,
20]. The energy in the thermodynamic limit is ≈ −0.4101e2/�B which is consistent
with previous studies [11,14].

Fig. 3. The entanglement spectrum for 18 electrons at ν = 1/3 with the Coulomb
interaction. The subsystem contains 9 electrons in 25 orbitals.

with the fixed number of states kept (Nkeep = 4000), or as a func-
tion of the number of kept states in the subsystem with a fixed
sweep number. For a fixed number of kept states, the accuracy
of the ground state energy decreases when we increase the sys-
tem size. It means that more states for the larger systems need to
be kept if the same accuracy is demanded. As shown in Fig. 1(b),
increasing the number of kept states obviously helps the conver-
gence although the energy drops very slowly when Nkeep is large.
However, for the largest system size with Ne = 18 we tested in
Fig. 1, the ground-state energy drops to 10−4 when just keeping
4000 states and after finishing 10 finite size sweeps. This energy is
far below the gap between the ground state and the first excited
state. We assume the ground state is close enough to the Laugh-
lin state in this case. To improve the accuracy, one needs more
finite-size sweeps and keeping more states in the truncation.

Having established the convergence scaling for the hard-core
Hamiltonian, we move to the full Coulomb interaction. At ν = 1/3
we calculate the ground-state energy for systems up to 20 elec-
trons. All the results are obtained by keeping up to 5000 states
in the subsystem. With keeping the same number of states, we
find the efficiency of our code is the same as that shown in Fig. 1
of Ref. [14]. The results for different system sizes at ν = 1/3 are
summarized in Fig. 2, which includes the data both from the ED
and the DMRG. It shows they match with each other very well.
We do the finite-size scaling for the ground-state energy per elec-
tron with a quadratic polynomial, and extrapolate the thermo-
Fig. 4. Finite size scaling of the ground-state energy per particle for ν = 5/2 FQH
state up to Ne = 30 electrons. The results are obtained by keeping up to 5000 states
in the truncation and after completing 10 finite size sweeps. The energy in the ther-
modynamic limit is consistent before and after rescaling the magnetic length �B ,
which means that the large system sizes have automatically eliminated the curva-
ture effects.

dynamic limit energy to be −0.410048e2/�B . On finite spheres,
it has been suggested [19,20] that the curvature effects can be
substantially minimized by rescaling the magnetic length �B . We
also plot the rescaled energies in Fig. 2 and do the finite-size
scaling with a linear function. The energy in the thermodynamic
limit −0.410136e2/�′

B is almost the same as that without rescal-
ing the magnetic length. This means the large-scale study by the
DMRG method has already removed the finite-size effects coming
from the curvature. Our results are also consistent with the previ-
ous DMRG study [11,14]. Besides the ground-state energy, we also
plot the entanglement spectrum [21] in Fig. 3 for 18 electrons at
ν = 1/3, for which we cut the system into two equal parts. The
splitting between the conformal part [21] and the non-conformal
part, and the counting of the conformal states in the entanglement
spectrum, demonstrate that DMRG has captured the correct topo-
logical properties of the ground state.

As a second case, we consider the filling ν = 5/2, believed to be
described by the Moore–Read Pfaffian state [3]. This state is more
fragile that the Laughlin state and has a smaller gap by nearly an
order of magnitude. To study the convergence, it is in principle
possible to use the exact interaction that produces the Moore–
Read state as a zero-energy ground state, but this is much more
costly because it is a three-body interaction. The results for the
Coulomb interaction projected to n = 1 Landau level are shown in
Fig. 4. The ground-state energies are obtained for up to 30 elec-
trons by keeping at most 5000 states. The result for the largest
system size presented in this plot was obtained within one week
on a computer cluster with 12 cores and 144G memory. With
the same scaling techniques as in the ν = 1/3 case, we extract
the ground-state energy per electron in the thermodynamic limit
≈ −0.3622e2/�B , consistent with Refs. [11,14].

3. Cylinder geometry

To complement the results obtained in the spherical geometry,
in this section we consider the cylinder geometry [16]. Cylinder
geometry is interesting because it shares some features with the
compact geometries, such as sphere or torus, but also possesses
two open boundaries, which makes it convenient for the study of
the edge effects, like the disk geometry [22–24]. Compared to the
sphere, the attractive feature of the cylinder is the flat surface and
lack of curvature effects.

Cylinder boundary condition is compatible with the Landau
gauge where periodic boundary condition in assumed along one
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Fig. 5. The convergence of the ground-state energy for electrons with hard-core in-
teraction on the cylinder. (a) We keep 2000 states in the truncation procedure for all
the system sizes. The ground-state energy drops very fast in the finite-size sweep-
ing procedure. (b) The dependence of the ground-state energy on the number of
kept states for 20 electrons.

direction (say y-axis) with a repeat distance L, and open boundary
condition in the other direction (x-axis). The single-body wave-
function in the lowest Landau level is given by

ψm(x, y) = 1√
π1/2L�B

eikm ye−(x+km�B )2/2�2
B , (3)

where km = 2πm/L is the momentum for the mth orbital. The or-
bital index m takes values 0,1, . . . , Norb − 1, and the distance in
x-direction between two nearest orbitals is 2π/L.

For a finite size system with Ne particles at filling ν = 1/3 for
example, the number of orbitals is Norb = 3Ne − 2, and thus the
area of the cylinder is quantized to be 2π Norb�

2
B . To accommodate

the finite number of the orbitals Norb , we fix the extent in the
x-direction to be X = 2π Norb�

2
B/L. Similar to the torus geometry,

the properties of many-body states depend on the aspect ratio λ =
X/L = 2π Norb�

2
B/L2. In the following we concentrate on the FQH

states that are realized in the vicinity of λ = 1.
For the V 1 hard-core interaction, the Hamiltonian (in units �B =

1) can be written in a simple form [16]:

H = 1

2

∑

m,n,l

(
m2 − n2)e−(m2+n2)/2a+

n+la
+
m+lam+n+lal. (4)

Exact diagonalization studies [16,17] show that H has a zero-
energy ground state, but the nature of the ground state changes
from the incompressible liquid to the charge-density wave upon
varying the aspect ratio. Here we focus on the liquid state and ob-
tain it by DMRG method for large systems up to 20 electrons with
the hard-core interaction.

The convergence of the ground state energy as a function of the
sweep number and the number of kept states is shown in Fig. 5.
For the system with 20 electrons, we obtain the ground state en-
ergy 10−13 when keeping only 2000 states and after completing
6 finite-size sweeps. On the other hand, if we look at the final
ground state energy as a function of the number of the kept states,
we observe that the same accuracy can be reached even by keep-
ing only 1000 states.

To verify that the ground state is indeed the Laughlin state, we
plot the average occupation number 〈c+

mcm〉 for the system with 20
electrons in 58 orbitals in Fig. 6. For an incompressible liquid, the
average occupation number is roughly constant in the bulk and
equal to ν , with some deviations close to the two edges. This is
indeed what we observe in Fig. 6.
Fig. 6. The mean orbital occupation number for 20 electrons with hard-core inter-
action at ν = 1/3 on the cylinder. DMRG calculation is performed by keeping 3000
states and finishing 6 finite size sweeps.

Fig. 7. The entanglement spectrum of the Laughlin state for 20 electrons on the
cylinder. Because of the hard-core interaction, the entanglement spectrum only con-
tains the conformal branch, with the same counting as in Fig. 3.

We also plot the entanglement spectrum on the cylinder, Fig. 7.
Because we use the ground-state of the V 1 pseudopotential Hamil-
tonian, the entanglement spectrum only contains a conformal
branch, but is otherwise similar to the spectrum obtained on the
sphere, Fig. 3. In particular, the counting of the conformal levels is
identical in the two cases (up to the limit set by the size of the
sphere). Note that although the true energy spectrum reflects the
presence of two edges on the cylinder, the entanglement spectrum
involves only a single cut and thus probes only a single edge, in
complete analogy with the sphere.

4. Conclusions and discussion

We presented a systematic study of the FQHE at two well-
known and important filling factors, ν = 1/3 and ν = 5/2, for
boundary conditions using our independent implementation of the
DMRG method. In the spherical geometry, the DMRG results for
the ground state energies at filling ν = 1/3 and ν = 5/2 are con-
sistent with the exact diagonalization study for small system sizes,
and the previous DMRG studies [11,14] for large system sizes. For
the largest system size we have reached, the error of the ground
state energy is about 10−4 which is roughly two–three orders of
magnitude below the energy gap to the excited states. The consis-
tency in the extrapolation of the ground-state energy shows that
these system sizes have negligible curvature effects.

The application of the DMRG method to the cylinder geometry
shows much higher efficiency compared to the sphere. Based on
the convergence for the V 1 interaction, we expect the cylinder to



Z.-X. Hu et al. / Physics Letters A 376 (2012) 2157–2161 2161
be the more promising venue for the future applications of DMRG.
Due to the presence of two open edges, the treatment of the full
Coulomb interaction is not as straightforward as in the compact
spherical geometry, and requires special care in defining the con-
fining potential to contain the fluid. One may furthermore expect
various phase transitions as a function of the aspect ratio and the
magnitude of the confining potential relative to e2ε�B . Details of
these studies will be presented elsewhere [15].
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