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Abstract. We study the scaling behavior in the tunneling amplitude when
quasiparticles tunnel along a straight path between the two edges of a fractional
quantum Hall annulus. Such scaling behavior originates from the propagation
and tunneling of charged quasielectrons and quasiholes in an effective field
analysis. In the limit when the annulus deforms continuously into a quasi-one-
dimensional (1D) ring, we conjecture the exact functional form of the tunneling
amplitude for several cases, which reproduces the numerical results in finite
systems exactly. The results for Abelian quasiparticle tunneling is consistent
with the scaling analysis; this allows for the extraction of the conformal
dimensions of the quasiparticles. We analyze the scaling behavior of both
Abelian and non-Abelian quasiparticles in the Read–Rezayi Zk-parafermion
states. Interestingly, the non-Abelian quasiparticle tunneling amplitudes exhibit
non-trivial k-dependent corrections to the scaling exponent.
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1. Introduction

Quasiparticle tunneling through narrow constrictions or point contacts that bring counter-
propagating edges close could serve as a powerful tool for probing both the bulk topological
order and the edge properties of fractional quantum Hall (FQH) liquids (see e.g. [1]). In
particular, interference signatures from double point contact devices may reveal the statistical
properties of the quasiparticles that tunnel through them [2], especially the non-Abelian
ones [3, 4]. In recent interference experiments at the ν = 5/2 FQH state, Willett et al [5, 6]
found that quasiparticles with charge e/4 and e/2 both contribute to the interference patterns
and dominate in different regimes, which was anticipated in earlier theoretical work [7]. To
gain a complete understanding of these experiments, one needs quantitative information about
the relative importance of quasiparticles with different charges. Motivated by this, four of
the authors and a co-worker [8] performed microscopic calculations of the tunneling matrix
elements of various types of quasiparticles, for both the Abelian Laughlin state and the non-
Abelian Moore–Read (MR) state. The focus of the previous work was on the dependence of
these matrix elements on the tunneling distance: the main result was that the ratio between
tunneling matrix elements for quasiparticles with different charges decays with tunneling
distance in a Gaussian form, which originates from their charge difference. Such considerations
and results are required for a complete understanding of the non-Abelian interferometer [9].

On the other hand, the system size dependence of the tunneling matrix elements is also
an interesting issue. In microscopic studies, we start from interacting electrons with fermionic
statistics. With proper choices of the microscopic Hamiltonian, ground states with non-trivial
topological properties emerge, together with fractionally charged quasiparticle excitations,
which may obey either Abelian or non-Abelian statistics. Naturally, in a calculation relevant to
quasiparticle tunneling amplitude, we can read out the information about the scaling dimension
of the corresponding tunneling operator. In particular, the finite system size cutoff in the
numerical calculations may introduce scaling behavior in the tunneling amplitude with an
exponent imprinted with the quasiparticle conformal dimension.
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In this paper, we study the system size dependence of these matrix elements in the Laughlin
and the Moore–Read states. By combining numerical calculations with an effective field theory
analysis, we show that their size dependence takes power-law forms with exponents related
to the scaling dimensions of the corresponding quasiparticle operators. Furthermore, in the
limit when the annulus deforms continuously into a quasi-one-dimensional (1D) ring, we
conjecture the precise functional forms of the size dependence, which is not only consistent
with the expected power-law form in the scaling limit, but also verified to be true in finite-size
systems (using the exact Jack polynomial approach, rather than Lanczos diagonalization with
controllable error), indicating their exactness. We also attempt to extend the discussion to the
Read–Rezayi states.

We review our model and earlier results in section 2. In section 3, we formulate a scaling
theory for the tunneling amplitude of Abelian quasiparticles and compare it with the numerical
scaling results. We then conjecture closed-form expressions for the tunneling amplitude, from
which we extract exact scaling exponents in section 4. We discuss the scaling behavior for
the charge e/4 non-Abelian quasihole in the Moore–Read state in section 5 and generalize the
discussion to the Read–Rezayi states in section 6. We provide a summary in section 7.

2. Our model and earlier results

In the plane (disc) geometry, we consider an FQH droplet at various filling fractions, which
correspond to the series of the Laughlin states, the Moore–Read state and the Read–Rezayi
parafermion states. We generate various Abelian and non-Abelian quasiparticles at the center of
the droplet. We assume a single-particle tunneling potential

Vtunnel(θ)= Vtδ(θ), (1)

which breaks the rotational symmetry, where θ is the argument of the complex coordinate
z = x + iy in the plane. For the many-body states with N electrons, we write the tunneling
operator as the sum of the single-particle operators,

T =

N∑
i=1

Vtunnel(θi)= Vt

N∑
i=1

δ(θi). (2)

We compute the bulk-to-edge tunneling amplitude 0qh
= |〈9GS|T |9

qh
GS〉|, where 9qh

GS and 9GS

are the FQH ground states with and without a quasihole (at the disc center), respectively.
As noted in the earlier work [8], the matrix elements consist of contributions from the
respective Slater-determinant components |l1, . . . , lN 〉 ∈9GS and |k1, . . . , kN 〉 ∈9

qh
GS, where ls

and ks are the angular momenta of the occupied orbitals. A non-zero contribution only enters
when |l1, . . . , lN 〉 and |k1, . . . , kN 〉 are identical except for a single pair li and k j with the
corresponding angular momentum difference. Therefore, the many-body matrix elements can
be decomposed into a sum of single-particle matrix elements

vp(k, l)≡ 〈k|Vtδ(θ)|l〉 =
Vt

2π

0 (((k + l)/2)+ 1)
√

k!l!
. (3)

In the limit that k and l tend to infinity with the tunneling distance fixed at d, i.e. |k − l| ∼√
2k(d/ lB)� (k + l), the single-particle matrix elements reduce to

vp(k, l)∼
Vt

2π
e−(k−l)2/4(k+l+2)

∼
Vt

2π
e−d2/(2lB)

2
, (4)
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which reflects the overlap of the two Gaussians separated by a distance d . For more details,
see [8]. For convenience, we will henceforth set Vt = 1 as the unit of the tunneling amplitudes.

For more relevance to the experimental situations in which quasiparticles tunnel between
two edges, we study the edge-to-edge tunneling by inserting n Laughlin quasiholes into the
center of the droplet [8]. This transforms a wavefunction 9({zi}) to

∏N
i=1 zn

i 9({zi}), so that
each component Slater determinant becomes a new one, picking up a new normalization
factor. The first n orbitals from the center are now completely empty and the electrons
are occupying orbitals above n, effectively producing an FQH droplet on an annulus. The
tunneling distance d(n, N ) between the inner and outer edges decreases monotonically under
this transformation. Correspondingly, 0qh is defined as the edge-to-edge tunneling amplitude.
Under the insertion of n Laughlin quasiholes, the single-particle tunneling matrix elements
vp(k, l) become vp(n + k, n + l). In the limit of n � N , we have vp(n + k, n + l)→ 1/(2π).

The earlier work [8] found that the tunneling amplitude ratio of quasiparticles with different
charges decays with a Gaussian tail as the inter-edge distance increases. The characteristic
length scale associated with this dependence originates partially from the difference in the
corresponding quasiparticle charges. In the Moore–Read state, for example, the tunneling
amplitude for a charge e/4 quasiparticle is larger than that for a charge e/2 quasiparticle [8, 9].
Our analyses [8] also show intriguing size dependence in the tunneling amplitudes for the e/4
and e/2 quasiholes, although their ratio appears to be size independent in the annulus geometry.
These observations motivated us to extend the study of the size dependence of 0qh for different
types of quasiholes to the Read–Rezayi series of FQH states, which include the Laughlin and
the Moore–Read states as special members.

We note that in equation (2) we introduced the bare tunneling potential for electrons, which
form FQH liquids. Our results represent the tunneling amplitudes for quasiparticles (not for
electrons) and have therefore taken into account the many-body correlations of the system.
But for quasiparticles, when treated as elementary excitations of the system, these are bare
tunneling amplitudes at the microscopic length and energy scales. They are subject to further
renormalization when effective low-energy theories are constructed by integrating out degrees
of freedom at higher energy and shorter length scales.

3. Field theoretical and numerical analyses of the tunneling amplitudes of Abelian
quasiparticles

We start with a field theoretical analysis of the quasiparticle tunneling amplitude, which
illustrates our calculation and provides an expectation of the results. We consider, for
illustration, a system of electrons and quasiparticles on a cylinder with circumference L and
edge-to-edge distance d � L . This geometry is equivalent to an annulus with an edge-to-edge
distance much smaller than the radius. For fixed d, the system size N ∝ L . We assume that the
edge runs around the x-direction, while tunneling occurs along the y-direction at x = 0.

We introduce quasiparticle operators 9a, j(x), with j = 1, 2 corresponding to the two
edges, while a is quasiparticle type, and normalize 9a (at each edge) such that the equal time
Green’s function satisfies

Ga(x − x ′)= 〈0|9†
a (x)9a(x

′)|0〉 ∼ |x − x ′
|
−21a , (5)

where 1a is the conformal dimension of 9a(x), and proper factors of microscopic length scale
` are implied to ensure the correct dimensionality of all quantities.
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In a low-energy effective theory, the tunneling Hamiltonian, transferring various types of
quasiparticles from one edge to another at x = 0, takes the form

HT = L
∑

a

ta[9†
a,1(0)9a,2(0)+ h.c.], (6)

where ta depends on quasiparticle type a but has no L dependence at fixed d. To facilitate
comparison with numerical calculations on rotationally invariant geometries, we include a
prefactor L—the Jacobian when transforming δ(θ) on the annulus to δ(x) on the cylinder.

A state generated by tunneling a quasiparticle from one edge to another takes the following
form (which is a momentum eigenstate),

|9qh
a 〉 = Ca

∫ L

0
dx dx ′9

†
a,1(x)9a,2(x

′)|0〉. (7)

It is easy to show using equation (5) that the normalization factor Ca ∝ L−2+21a for

1a 6 1/2, (8)

in which case the corresponding quasiparticle tunneling operator is relevant in the
renormalization group (RG) sense [1].

We define the bare quasiparticle tunneling matrix element,

0a = 〈0|HT |9qh
a 〉

∝ ta L−1+21a

∫
dx dx ′

〈0|9
†
a,2(0)9a,1(0)9

†
a,1(x)9a,2(x

′)|0〉

= L1−21a Ka(d), (9)

where we used properties (5) and (8) and Ka(d) encodes the d dependence of ta, which is
expected to be dominated by the Landau level Gaussian factor [8, 9]. This scaling behavior
is expected for ‘elementary’ Abelian quasiholes of the Laughlin type, e.g. the charge e/3
quasiholes in the ν = 1/3 Laughlin state, as well as for the charge e/2 quasihole (in the identity
sector) in the ν = 1/2 Moore–Read state.

We now compare the scaling behavior with numerical results [8]. For clarity, we multiply
the tunneling amplitude in figure 4(b) of [8] by a factor of e(d/4lB)

2
(lB being the magnetic length)

for the charge e/2 quasihole in the Moore–Read state and plot the rescaled data in figure 1(a).
We find that the rescaled data, depending on the corresponding number of electrons N , falls
on a series of curves. Assuming that the curves scale as N α, we obtain α = 0.47 for the best
scaling collapse, as shown in figure 1(b). Similarly, we analyze and plot the corresponding
scaling collapses for charge e/3 and 2e/3 quasiholes in the Laughlin state at ν = 1/3 in figure 2.
We obtain the optimal parameter α = 0.65 and −0.4, respectively. In table 1, we compare the
optimal fitting α and the conformal dimensions 1 of the corresponding quasiholes. We find
excellent to reasonably good agreement with the relation

α = 1 − 21 (10)

obtained above. In the charge 2e/3 quasihole case for ν = 1/3, we note that1= 2/3> 1/2 and,
therefore, the condition of equation (8) is not satisfied. In addition, this is a ‘composite’ (instead
of ‘elementary’) quasihole, whose scaling behavior requires a separate (and more complicated)
analysis, which we present below.

New Journal of Physics 13 (2011) 035020 (http://www.njp.org/)

http://www.njp.org/


6

0.1

1

 0.1  1  10

e(d
/2

1 B
)2 /4

 Γ
e/

2

d / 1B

(a)N
4
6
8

10
12
14

0.1

0.2

0.3

 0.1  1  10

N
-α

 e
(d

/2
1 B

)2 /4
 Γ

e/
2

d / 1B

(b)

α = 0.47

N
4
6
8

10
12
14

Figure 1. Rescaled tunneling amplitude (a) e(d/4lB)
2
0e/2 and (b) N−αe(d/4lB)

2
0e/2

with α = 0.47 for the charge e/2 quasihole in the Moore–Read state as a
function of the edge-to-edge distance d with n = 0–1000 additional Laughlin
e/2 quasiholes inserting at the center.

0.05

0.1

0.2

 0.1  1  10

N
-α

 e
(d

/3
l B

)2 /4
 Γ

e/
3

d

(a)

α = 0.65

N
3
4
5
6
7
8
9

10  0.1

 1

 0.1  1  10

N
-α

 e
(2

d/
3l

B
)2 /4

 Γ
2e

/3

d

(b)

α = -0.40

N
3
4
5
6
7
8
9

10

Figure 2. Rescaled tunneling amplitude N−αe(qd/2elB)
2
0q for quasiparticles with

(a) q = e/3, α = 0.65 and (b) q = 2e/3, α = −0.4 in the Laughlin state at
ν = 1/3 as a function of the edge-to-edge distance d with n = 0–1000 additional
Laughlin e/3 quasiholes inserting at the center.

New Journal of Physics 13 (2011) 035020 (http://www.njp.org/)

http://www.njp.org/


7

Table 1. The scaling exponent α of the quasihole tunneling amplitude and the
corresponding conformal dimension of the quasiholes.

q (ν) e/2 (1/2) e/3 (1/3) 2e/3 (1/3)

1 1/4 1/6 2/3
1 − 21 1/2 2/3 −1/3
α 0.47 0.65 −0.40

The momentum eigenstate generated by tunneling a 2e/3 quasihole from one edge to
another takes the form

|92qh
a 〉 = C2a

∫
dx1 dx2 dx ′

1 dx ′

29
†
a,1(x1)9

†
a,1(x2)9a,2(x

′

1)9a,2(x
′

2)|0〉, (11)

where 9a is the operator for an e/3 quasihole; the expression above explicitly incorporates
the fact that the 2e/3 quasihole is a composite object, and the state created by its tunneling
moves two e/3 quasiholes from one edge to another, which tunnel simultaneously but are not
necessarily bound together before and after the tunneling process.

To calculate the normalization factor C2a and tunneling matrix element 〈0|HT|9
2qh
a 〉, we

need the full machinery of chiral Luttinger liquid theory for the ν = 1/M Laughlin state [1],
in which 9a(x)∼ exp[iϕ(x)/

√
M] and 92a(x)∼ exp[2iϕ(x)/

√
M], where ϕ is a bosonic

Gaussian field whose normalization is determined by the conformal dimension of 9a, which is
1a = 1/2M ; we also have 12a = 41a following from the fact that ϕ is a free or Gaussian field.
Using the chiral Luttinger liquid theory whose action (for a single edge) takes the form [1]

S =
M

4π

∫
dt dx[(∂t + v∂x)ϕ(x, t)][∂xϕ(x, t)], (12)

it is straightforward to calculate

C2a ∝

∣∣∣∣∫ dx1 dx ′

1 dx2 dx ′

2〈0|e(i/
√

M)[ϕ(x1)+ϕ(x2)−ϕ(x ′

1)−ϕ(x
′

2)]|0〉

∣∣∣∣−1

∝ L−4+41a (13)

and

02a ≡ 〈0|HT |92qh
a 〉 ∝ t2a L−3+41a

∣∣∣∣∫ dx dx ′
〈0|e(i/

√
M)[2ϕ(0)−ϕ(x)−ϕ(x ′)]

|0〉

∣∣∣∣2
= L1−81a K2a(d)= L1−212a K2a(d), (14)

where we used the fact that 12a = 41a in the last step.
Generalizing this analysis to tunneling of a charge me/M quasiparticle in the Laughlin

state at ν = 1/M , we find

Cma ∝ L−2m+2m1a (15)

and

0ma = L1−2m21a Kma(d)= L1−21ma Kma(d), (16)

where we have used the fact that 1ma = m21a. As a result, relation (10) holds in all of these
cases.
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4. Conjectures on exact amplitudes in a quasi-one-dimensional (1D) limit

4.1. The quasi-1D limit and the connection with the Jack polynomials

For the Laughlin state and the Moore–Read state, the numerical results presented above agree
with the scaling analyses, but not to a high precision. For example, the exponent for the charge
2e/3 quasihole α = −0.4 is 20% smaller than the expectation value of −1/3. Clearly, the
systems are far from the thermodynamic limit. This motivated us to study the scaling behavior
from a different approach: by conjecturing exact (or approximate) formulae and extracting exact
exponents from these conjectures. To achieve that, we consider the quasi-1D d → 0 limit [8], in
which the scaling behavior persists, as indicated by figures 1 and 2.

In the mapping from disc to annulus we have described earlier, the wavefunctions, in terms
of polynomials of electron coordinants, are unchanged; however, the geometry through the
normalization of single-electron basis changes. We point out that in the d → 0 limit, there is
no need to normalize each single-electron Landau level orbital wavefunction by a momentum-
dependent coefficient. When both the inner and outer radii are much larger than their difference,
the normalization factor depends only on the number of quasiholes in the lowest order, which
is the same for all occupied orbitals. From a different point of view, we can write down
the antisymmetric many-body ground state and quasihole wavefunctions as weighted sums of
Slater determinants slµ = det(z

µ j

i ). In the d → 0 limit, all Slater determinants are normalizable
by the same constant8. As a result, the insertion of an additional Abelian quasihole only changes
the labels of the orbitals without affecting the amplitude of individual Slater determinants and
the overall normalization factor.

With the recent development of the connection [10, 11] of the Jack polynomials (see
e.g. [12]) with a negative Jack parameter αJ and FQH wavefunctions, we now understand that
these antisymmetric quantum Hall wavefunctions can be written as single Jack polynomials
multiplied by the Vandemonde determinant (which are sums of Slater determinants) whose
corresponding amplitudes can be evaluated recursively [13]9. We emphasize that the amplitudes
are integers up to a global normalization constant 1/

√
C , where C is an integer. The Jack

polynomial connection facilitates the exact evaluation of the tunneling amplitude even in
relatively large systems. Otherwise, one would need Lanczos diagonalization to produce a
numerical approximation with an accuracy that depends on the number of iterations, which
is only cost effective for sparse Hamiltonians. For multiparticle interactions, the Hamiltonian
becomes very dense and the Lanczos algorithm becomes progressively more expensive. Based
on the exact results, we can conjecture [14] the functional forms of the scaling functions for the
Laughlin states, the Moore–Read state and the Read–Rezayi Zk parafermion states.

4.2. Scaling of quasihole tunneling amplitudes in the Laughlin states

The Laughlin wavefunction at filling fraction ν = 1/M can be constructed by the chiral boson
conformal field (CFT) theory with a compactification radius M [15]. The primary fields are
vertex operators eimϕ(z)/

√
M , where ϕ(z) is the chiral boson. Operators with m = 1, 2, . . . ,M

8 For a concrete example, the four-electron Moore–Read state in the d → 0 limit, when we set
C =

√
13 · 5!4!3!2!/

√
12 in equation (C4) of [8], contains exactly the same coefficients as the example in [13].

9 Generic and unoptimized source codes implementing [13] are available for download from http://zimp.zju.
edu.cn/∼xinwan/2010instans/.
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correspond to quasiholes (m < M) or electrons (m = M), whose conformal dimensions are
1(m,M)= m2/(2M).

For M = 3 or ν = 1/3, we conjecture that the tunneling amplitude for the charge e/3
quasihole is

2π0e/M
L ,M(N )=

N

M
B

(
N ,

1

M

)
, (17)

where M = 3 and N is the number of electrons. Here, we introduce the β function B(x, β)=

0(x)0(β)/0(x +β) that for large x and fixed β, asymptotically approaches 0(β)x−β , where
0(x) is the Gamma function (not the tunneling amplitude elsewhere). We verified numerically
that the conjecture is exact for up to ten electrons; therefore, assuming that the conjecture is
exact also for larger systems, we obtain the exact scaling exponent αe/3

= 1 − 1/3 = 2/3. This
is also verified to be correct for M = 5.10 In other words, based on the scaling analysis we
discussed earlier, we can compute the conformal dimension of charged Abelian quasiholes in
the Laughlin state to be 11

M = 1/(2M).
Interestingly, we can make another connection to Jack polynomials by rewriting the

tunneling amplitude in a neat way as, e.g. for ν = 1/3,

2π0e/3
L ,M=3(N )= N

�̂(10010010. . .01001)

�̂(01001001. . .001001)
, (18)

where the operator �̂ takes the product of the occupied non-zero single-particle momenta,
e.g. �̂(10010010. . .01001)= 3 · 6 · · · · · (3N − 3)= (3N − 3)!!!. One recognizes that the
arguments of �̂ are precisely the root configurations of the corresponding Laughlin ground
state and the charge e/3 quasihole state, which are the final and initial states, respectively, of the
quasihole tunneling process. We use the convention throughout the paper to label the leftmost
number as the occupation number of the central orbital in the disc geometry.

The exact tunneling amplitude for charge 2e/3 quasiholes in the Laughlin state discussed
earlier can be written as

2π02e/3
L ,M=3(N )= 2!N

�̂(101101. . .011)

�̂(011011. . .11011)
= 2!N

�̂

(
001001. . .01
100100. . .001

)
�̂

(
010010. . .1001
001001. . .01001

) , (19)

where �̂
(
λ
µ

)
= �̂(λ)�̂(µ). Apparently, the argument of �̂ in the denominator is not the root

configuration of the 2e/3 quasihole state, which should be 001001 . . . 1001, nor is that in
the numerator the root configuration of the Laughlin ground state. However, if we perform
a particle–hole transformation that replaces 1 by 0 in the arguments and vice versa, the
argument of �̂ in the denominator, not in the numerator, becomes the root configuration of the
corresponding Laughlin ground state. Meanwhile, the argument of �̂ in the numerator becomes
the root configuration of the corresponding e/3 quasihole state. Therefore, the first equality
can be understood as the particle–hole transformation of the charge e/3 quasihole tunneling
amplitude, implying that the tunneling of a 2e/3 quasihole is equivalent to the tunneling of
an e/3 quasiparticle. Then formally, the second equality can be understood as decomposing
the 2e/3 quasihole into two charge e/3 quasiholes. By studying 0

2e/3
L ,3 (N + 1)/02e/3

L ,3 (N ),

10 Equation (17) also applies to the integer case (M = 1), in which the right-hand side reduces to unity.
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we conclude that the scaling behavior of 0
2e/3
L ,3 (N )∼ N−1/3 is again consistent with

equation (10) for

1
me/M
L ,M =

m2

2M
, (20)

as expected. We note that without the exact amplitude conjecture we would obtain a large (20%)
error of the exponent based on finite-size scaling only; this means that the systematic error due
to finite system size is not negligible in certain cases unless we can conjecture numerically exact
results.

We can write down similar results for the ν = 1/5 Laughlin state, which are in agreement
with equation (20) with M = 5 for m = 1–4. For example, for m = 3,

2π03e/5
L ,5 (N )= 3!N

�̂

0001000010. . .001
0000100001. . .0001
1000010000. . .00001


�̂

0100001000. . .100001
0010000100. . .0100001
0001000010. . .00100001

 . (21)

The scaling behavior is asymptotically 03e/5
L ,5 ∼ N−4/5, again consistent with equation (10).

4.3. Scaling conjecture for Abelian charge e/2 quasiholes in the Moore–Read state

The Moore–Read wavefunction at the filling fraction ν = 1/2 can be constructed by the
Ising CFT, which describes the neutral fermion component, and the chiral boson CFT, which
describes the charge component [15]. Two quasihole operators relevant to inter-edge tunneling
are ψ e/4

qh = σeiϕ/2
√

2 and ψ e/2
qh = eiϕ/

√
2. The former is a non-Abelian quasiparticle, whereas the

latter an Abelian one. We note that the charge e/2 quasihole can be regarded as one of the two
fusion results (i.e. σ × σ = 1 +ψ) of two charge e/4 quasiholes; the other, ψ e/2,ψ

qh = ψeiϕ/
√

2,
is irrelevant (in the renormalization group sense) in inter-edge tunneling. The conformal
dimension of the charge e/2 quasihole is 1e/2

= 1/4.
We find the tunneling amplitude for ψ e/2

qh in the d → 0 limit to be exactly

2π0e/2
MR(N )= N

�̂(11001100110. . .0110011)

�̂(011001100110. . .0110011)
. (22)

This is similar to equation (18) for the ν = 1/3 Laughlin case, emphasizing again the role of
root configuration of the states involved in the tunneling process. One can write, equivalently,

2π0e/2
MR(N )=

N

4
B

(
N

2
,

1

2

)
, (23)

which leads to 0e/2
MR(N )∼ N 1/2, again consistent with the scaling analysis, i.e. αe/2

= 1 − 21e/2.

5. Scaling analysis for non-Abelian quasiholes in the Moore–Read state

We have seen in the previous two sections that the scaling behavior of the Abelian quasihole
tunneling amplitudes can be well understood. The individual scaling exponent is simply related
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Table 2. The tunneling amplitude for a charge e/4 non-Abelian quasihole in
the Moore–Read state. We emphasize that these numbers are exact and can be
reproduced identically by equation (24).

N By Jack polynomial calculation Evaluation of equation (24)

4 8
√

33
1.392 621 247 645 583

6 32
√

3
√

1067
1.696 791 171 936 646

8 512
√

3
√

205 931
1.954 203 218 066 135

10 10 240
√

22 034 617
2.181 459 746 630 286

12 245 760
√

10 598 650 777
2.387 184 066 751 195

14 6 881 280
√

7 132 891 972 921
2.576 537 135 673 849

16 73 400 320
√

3
13

√
126 197 319 520 91

2.752 898 271 693 840

18 2 642 411 520
√

3
13

√
14 550 550 940 760 923

2.918 623 065 050 085

to the conformal dimension of the tunneling particle. In this section, we focus on the non-
Abelian charge e/4 quasihole in the Moore–Read phase. The quasihole operator can be written
as 9e/4

qh = σeiϕ/2
√

2, which consists of a bosonic charge component with conformal dimension
1e/4

c = 1/16 and a fermionic neutral component also with conformal dimension 1e/4
n = 1/16.

The total dimension is thus1e/4
=1e/4

c +1e/4
n = 1/8. In some sense, the situation for the charge

e/4 quasihole in the Moore–Read state is somewhat similar, but not identical to the 2e/3
quasiparticle at ν = 1/3, as it carries a charge component and a neutral component. It is thus a
‘composite’ object.

Incorporating our prior knowledge of the Abelian cases, we carefully analyze the tunneling
amplitude of the non-Abelian quasihole in the quasi-1D limit and conjecture that for the charge
q = e/4 quasihole in the Moore–Read state with N = 2n electrons, the tunneling amplitude is

2π0e/4(N )=
N/2

4

√√√√B

(
N

2
,

1

2
+

√
3

4

)
B

(
N

2
,

1

2
−

√
3

4

)
. (24)

The square-root form, which is absent in the Abelian cases, was conceived by noting that the
ground state and the state with quasiholes differ by a twist (σ s at the center and along the edge
in the latter). Therefore, the two wavefunction normalization constants (square roots of inverse
integers) are not equal and the square root does not disappear in the tunneling amplitude. The
second arguments of the two β functions turn out to be the roots of x2

− x + (1/16)= 0. We
emphasize that the formula is verified to be exact to machine precision (<10−15) for up to 18
electrons. In table 2, we list the tunneling amplitudes as ratios of integers and square roots of
integers next to their numerical values.

The identification of the tunneling amplitudes by equation (24) implies that it has the same
scaling behavior 0e/4

MR(N )∼ N 1/2 as that of the Abelian charge e/2 quasiholes. The underlying
physics of the result is, however, not as easy to understand as those of the Abelian quasiholes.
Apparently, the scaling exponent α 6= 1 − 21e/4

= 3/4, as expected from simple dimension
counting. We check the reduced tunneling amplitudes at finite edge-to-edge distance d and
compare the scaling collapses with α = 0.5 and α = 1 − 21e/4

= 0.75 in figure 3. We find that
the choice of α = 0.5 yields a much better scaling collapse, especially for d < 3lB.
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Figure 3. Rescaled tunneling amplitude N−αe(d/4lB)
2/40e/4 for charge e/4

quasiholes in the Moore–Read state as a function of the edge-to-edge distance
d for (a) α = 0.5 and (b) α = 0.75 with n = 0–1000 additional Laughlin e/2
quasiholes inserted at the center.

While we do not have a satisfactory theory to explain the anomalous scaling behavior
for the non-Abelian quasihole, we speculate that one of the potential explanations may be as
follows. In the quasi-1D limit, the two edges may not be regarded as independent edges for the
neutral component. It is possible that we need to include coupling between neutral components
on the two edges (the Abelian charge components are not affected). If the coupling is relevant,
we can estimate the length scale for such interactions to be ∼3lB, which is in agreement with
the earlier estimate [16]. Beyond this scale, topological ground state degeneracy and unitary
transformation due to braiding are exponentially exact. However, this argument cannot explain
why the exponent happens to be 1/2.

Alternatively, one may speculate that the charge and neutral components may not always
be bound together. A realistic tunneling potential, often arising from applying a gate voltage,
couples only to the charge component giving neutral components freedom to propagate in
the bulk region other than x = 0. Qualitatively, we expect that the scaling behavior will
be different from simply replacing 1e/4 with the sum of the charge and neutral conformal
dimensions,1e/4

c +1e/4
n in equation (10). In general, the tunneling process may allow additional

σ -propagators, which may help to produce the exponent α = 1/2 as α = 1 − 21e/4
c − 61e/4

n with
an anomalous exponent δα = −41e/4

n .

6. Speculations on the Read–Rezayi Zk parafermion states

To offer additional insights, we attempt to generalize the results to the Read–Rezayi Zk

parafermion states with the electron operator

ψe = ψ1ei
√
((k+2)/k)ϕ. (25)
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Table 3. The tunneling amplitude for charge ke/(k + 2)Abelian quasiholes in the
Read–Rezayi states. They are all within 1% error of equation (27); the relative
errors are listed in parentheses following the tunneling amplitudes.

N/k k = 3 k = 4 k = 5

2 1.256 203 474 (0.49%) 1.206 153 846 (0.51%) 1.171 688 187 (0.43%)
3 1.451 788 763 (0.65%) 1.358 816 509 (0.65%) 1.296 273 516 (0.52%)
4 1.614 288 884 (0.73%) 1.483 200 501 (0.71%) 1.396 827 446 (0.58%)
5 1.755 379 103 (0.77%) 1.589 612 764 (0.74%) 1.481 715 173 (0.60%)
6 1.881 240 395 (0.79%) 1.683 409 192 (0.75%) 1.555 472 123 (0.58%)
7 1.995 594 026 (0.81%)

The conformal dimension for ψ1 is k−1
k , whereas for the vertex operator it is k+2

2k . The filling
fraction is νk =

k
k+2 . In practice, we generate this ground state by a Jack parameter αJ = −(k + 1)

and the corresponding root configuration of 1k001k00 · · · 1k (where 1k means k consecutive 1s)
so that there are exactly k 1s in any (k + 2) consecutive orbitals.

The charge e
k+2 non-Abelian quasihole operator is

ψ
e/(k+2)
qh = σ1eiϕ/

√
k(k+2). (26)

The conformal dimension for σ1 is 1n =
k−1

2k(k+2) and for the vertex operator it is 1c =
1

2k(k+2) .

One can form an Abelian quasihole of charge ke
k+2 by fusing kψ e/(k+2)

qh quasiholes. The conformal
dimension of the Abelian quasihole is 1ke/(k+2) =

k
2(k+2) . The corresponding root configurations

for the smallest-charged non-Abelian and Abelian quasiholes are 1k−10101k−1010 · · · 1k−101
and 01k001k00 · · · 1k , respectively. The e/4 and e/2 quasiholes in the Moore–Read states
correspond to the k = 2 cases.

From equations (17) and (23), we conjecture that the tunneling amplitude for the charge
ke

k+2 Abelian quasihole in the filling factor ν =
k

k+2 state is

2π0ke/(k+2),1
k (N )=

N

k + 2
B

(
N

k
,

k

k + 2

)
. (27)

Comparing with the numerical results based on recursive construction, we find that
equation (27) is not exact, but the errors for states (M = 1) up to k = 5 are all within 1%
(table 3). This leads to

0
ke/(k+2),1
k (N )∼N 1−(k/k+2)

≡ N 1−21ke/(k+2), (28)

which implies 1c ≡1e/(k+2) =
1

2k(k+2) . We note that the relative error is not increasing
monotonically. For k = 5, the relative error saturates at N = 25 and decreases at N = 30. Due
to computational limitation, we are unable to verify that this trend is also true for generic k. But
the increase in the relative error for k = 3 and 4 also slows down notably around N = 20.

We want to obtain a similar approximation for the charge e/(k + 2) non-Abelian quasihole,
so that we can compute the conformal dimension of σ1. Ideally, the form should reduce to
equation (24) for k = 2 and equation (17) for k = 1 (i.e. M = 3). But with the origin of the
numerous parameters in equation (24) unclear, the attempt has not yet been successful. Instead,
we fit numerical results to a power law in each case and list the exponents in table 4, in addition
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Table 4. The scaling exponent α for the smallest charge e/(k + 2) quasihole
tunneling amplitude for the Read–Rezayi series. They are obtained from the
exact conjectures (for k = 1–2) or by data fitting (for k = 3–5).

k 1 2 3 4 5

α 2/3 1/2 0.4586 0.4711 0.4792

0 1 2 3 4 5 6
k

0.2

0.4

0.6

0.8

1.0
α

Figure 4. Scaling exponent α for the smallest-charge quasihole tunneling
amplitude [0(N )∼ N α] for the Read–Rezayi series with k = 1–5. The dashed
line attempts to fit the exponent to a linear dependence on the conformal
dimensions of the charge and neutral components (equation (30)).

to the known case of k = 1 and 2 for the Read–Rezayi series. In figure 4, we attempt to fit the
exponent to the form

αe/(k+2)
= 1 − (sk + t)1c − (uk + v)1n, (29)

where s, t , u and v are integers. The linear k dependence in the fitting form takes into account
the clustering nature of the Read–Rezayi states (we will return to a discussion of the physics of
the hypothesis after we present the fitting result). The result with the best fit is

αe/(k+2)
= 1 −

k2 + 3k − 2

2k(k + 2)
, (30)

as indicated by the dashed line in figure 4. Interestingly,

αe/(k+2)
= 1 − 21c − 21n −

k − 1

2k
. (31)

Incidentally, the last term (or the anomalous exponent) is −(k + 2)1n. In other words, we find
that in equation (29) s = 0, t = 2, u = 1 and v = 4.

With the fitting result in hand, let us go back and discuss the physics behind the hypothesis
in equation (29) that the scaling exponent has a linear k dependence. First, based on the analysis
in the Moore–Read case in section 5, it is natural to expect αe/(k+2)

= 1 − 21c − C1n, where C
is an integer. The reason is that the charge component is constrained by the tunneling potential
and we can only have the charge component propagating along the two edges (another 21c is
canceled by the normalization). The fitting result that s = 0 and t = 2 confirmed this argument.
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We cannot say this for the neutral parafermions as there is no such constraint. So we realize that
probably we have C − 2 more neutral parafermion operators σ1 related to the propagation along
the edge direction than charged vertex operators eiϕ/

√
k(k+2) when evaluating the tunneling matrix

element. Due to the clustering property of the parafermions, we expect a linear k dependence
of C and find C − 2 = k + 2. This phenomenologically suggests that the C − 2 vertex operators
(only tunneling across the edges) together carry one electron charge, which can be justified
inside a condensate.

7. Summary and discussion

In summary, we find that the tunneling amplitude for Abelian quasiparticles exhibits finite-size
scaling behavior with an exponent related to the conformal dimension of the quasiparticles,
irrespective of whether their inter-edge tunneling is relevant or not. This is true for Abelian
quasiparticles in both Abelian and non-Abelian quantum Hall states. Generically, we find that
in our model, the inter-edge tunneling amplitude for an ideal quasiparticle (arising from the
variational wavefunctions) with charge q and a conformal dimension of1q can be expressed as

0q(N , d)= 00 N αq
e−(qd/2elB)

2
, (32)

where αq
= 1 − 21q for an Abelian quasiparticle with charge component only, e.g. αe/2

= 1/2
for the charge e/2 Abelian quasihole in the Moore–Read state. We note that 00 is related
to the propagation of charge bosons and neutral (para)fermions perpendicular to the edges,
which contain additional dependence on d as observed for d > lB. The observation of the
scaling behavior suggests that the systems are described by underlying conformal field theories;
in fact, the conformal dimensions of the Abelian quasiholes obtained from the tunneling
amplitudes are in perfect agreement with those in the Zk parafermion theories for quantum
Hall wavefunctions, based on which we can deduce the conformal dimensions of non-Abelian
quasiholes. Computing the conformal dimensions of quasiparticles from wavefunctions has
also been attempted in the pattern of zeros classification [17] and in the Jack polynomial
approach [18].

The scaling behavior can be alternatively expressed by a differential equation,

∂0̃q

∂l
= αq0̃q

= (1 − 21q)0̃q, (33)

where 0̃q
= e(qd/2elB)

2
0q and N = el . Here, we fix the edge-to-edge distance d and the filling

fraction ν so the number of electrons N ∼ Ld , where L is the length of the edge; in the large N
limit the annulus is thin, so we do not need to distinguish the lengths of the inner and outer edges.
We note that equation (33) resembles the renormalization group flow equation in the context of
edge state transport [1]. In particular, α2e/3 for the quasiparticles with charge 2e/3 is negative,
which reflects that the quasiparticles are irrelevant to inter-edge tunneling. In the Moore–Read
case, on the other hand, quasiparticles with charge e/4 and e/2 are both relevant, as observed
in the interference experiments [5, 6]. It is not clear, however, whether both quasiparticles play
a role in the quasiparticle tunneling at a quantum point contact [19].

For the charge e/4 non-Abelian quasihole in the Moore–Read state, we find αe/4
= 1/2

(not 3/4) and we speculate that the contributions from the charge and neutral components are
asymmetric. Interestingly, the scaling exponent coincides with that of the charge e/2 Abelian
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quasiparticle and therefore we obtain perfect data collapse in figure 5 of [8] for different N .
Generically, in the non-Abelian quasiparticle tunneling amplitudes for the Read–Rezayi Zk

parafermion states, we find anomalous scaling behavior (hence the signature of non-Abelian
statistics in model simulations) beyond simple scaling analysis.
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