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The tunneling between the Laughlin state and its quasihole excitations are studied by
using the Jack polynomial. We find a universal analytical formula for the tunneling
amplitude, which can describe both bulk and edge quasihole excitations. The asymptotic

behavior of the tunneling amplitude reveals the difference and the crossover between bulk
and edge states. The effects of the realistic coulomb interaction with a background-charge
confinement potential and disorder are also discussed. The stability of the tunneling
amplitude manifests the topological nature of fractional quantum Hall liquids.
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1. Introduction

Fractional quantum Hall (FQH) liquids are examples of experimentally realizable

phases that support topological objects. Quasiparticle excitations in the FQH liquids

have fractional charge and obeys fractional statistics.1,2,3 Some FQH liquids may

support more exotic quasiparticle excitations with non-Abelian statistics, which

have potential applications in topological quantum computation.4 The measure-

ment of the transport properties of the quasiparticles propagating along the edge

of FQH liquids is crucial for the identification of the topological nature of the sys-

tems. As standard practice in noise and interference experiments quantum point

contacts are introduced to allow quasiparticles propagating on one edge to tunnel

to another. This motivated the authors and their collaborators to study the quasi-

particle tunneling amplitudes in FQH liquids in the disk geometry.5,6 We found

that the tunneling amplitudes exhibit interesting scaling behavior, whose exponent

is related to the conformal dimension of the tunneling quasiparticles.
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In the disk geometry with an open boundary edge excitations arise from the

bosonic density deformation of the FQH liquids and, in the case of the Moore-

Read state, from an extra branch of Majorana fermion mode. The edge excitations

are closely related to the bulk quasihole excitations. For example, a charge |e|/m

quasihole at ξ in a ν = 1/m Laughlin droplet ΨL =
∏

i<j(zi−zj)
m exp(−

∑

i |zi|
2/4)

of N electrons can be described by the wavefunction

Ψqh =

[

∏

i

(zi − ξ)

]

ΨL, (1)

where zj = xj + iyj is the complex coordinate for the jth electron. The quasihole

excitation can be expanded into a sum of edge excitations, whose amplitudes depend

on the location of the quasihole ξ

Ψqh =

[

∑

n

(−ξ)N−nsn

]

ΨL, (2)

where sn = SN (
∏n

i zi) is a symmetric polynomial of degree n and SN denotes

the total symmetrization among the N coordinates. The first few examples are

s0 = 1, s1 =
∑

i zi, s2 =
∑

i<j zizj, etc. In a Laughlin state the gapless edge mode

snΨL spans the Hilbert space of low-energy edge excitations. In fact, there is no

strict distinction between a quasihole and an edge excitation with a large angular

momentum ∆M . The conventional understanding is that an edge excitation has

∆M = O(1), while a quasihole excitation ∆M = O(N). The correspondence of

the bulk and edge excitations suggests that the bulk and edge quasihole tunneling

amplitudes may have a parallel correspondence and, therefore, a smooth crossover.

In this paper we confirm that the quasihole tunneling amplitude between the

Laughlin state and its bulk and edge excitations (〈Ψqh|T |ΨL〉 and 〈snΨL|T |ΨL〉,

where T is the tunneling operator to be defined below), can be described by a uni-

fied picture. In particular, we conjecture a universal formula in the limit of a small

interedge distance, which can be reduced to the bulk quasihole tunneling amplitude

result reported earlier.6 The tunneling amplitude of topological nature is robust

against the influence of long-range interaction and disorder. The paper is organized

as follows. In Sec. 2, we review our previous study about the bulk quasihole tun-

neling amplitude in Laughlin state and explain the technical details. The study is

extended to edge quasihole tunneling amplitude in Sec. 3. The robustness of the

tunneling amplitude in the presence of long-range coulomb interaction and disorder

is emphasized in Sec. 4. We summarize the results in Sec. 5.

2. A brief review of the bulk quasihole tunneling amplitude in a

Laughlin droplet

We consider a FQH liquid on a disk and assume a single-particle potential

Vtunnel(θ) = Vtδ(θ), which breaks the rotational symmetry. The potential defines a
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tunneling path for quasiparticles under the gate influence at a quantum point con-

tact. We start by quoting the result5 for the tunneling matrix element between two

single-particle states with angular momentum k and l, vp(k, l) ≡ 〈k|Vtunnel(θ)|l〉 =
Vt

2π
Γ((k+l)/2+1)

√

k!l!
. The tunneling operator of the many-body wavefunction is then de-

fined as T =
∑

i Vtunnel(θi) and the amplitude for a quasihole to tunnel to the

droplet edge is

Γqh =
〈Ψqh|T |Ψ0〉

√

〈Ψqh|Ψqh〉
√

〈Ψ0|Ψ0〉
, (3)

where |Ψ0〉 and |Ψqh〉 are the wavefunctions for the ground state and the quasihole

state, respectively.

The matrix element form of the tunneling amplitude suggests that we can ei-

ther use Lanczos-type exact diagonalization or variational Monte Carlo simulation

to calculate. However, these approximations fail to reach the accuracy needed for

the error-free determination of the conformal dimensions of quasiholes (though they

are useful in the discussion of the long-range interaction and disorder effects). For-

tunately, the application of Jack polynomial provides an instructive yet numerical

exact calculation method.

Let us digress and explain first the connection between the Laughlin model

wavefunction, which is the exact ground state of the hard-core (V1 only) interac-

tion, and the Jack polynomial.7 In general, Jacks belong to a family of symmetric

multivariate polynomials of the complex particle coordinates. Potentially, they can

be FQH wavefunctions for bosons (appending the ubiquitous Gaussian factor) or for

fermions (with an extra antisymmetric factor
∏

i<j(zi − zj), i.e., the Vandermonde

determinant). A Jack Jα
λ (z1, z2, · · · , zN) can be parametrized by a rational number

α (negative in this context), which is related to the clustering properties of the

polynomial wavefunction, and a root configuration λ, which satisfies a generalized

Pauli exclusion principle and from which one can derive a set of monomials that

form a basis for the Jack. The Jack is an eigenstate of the corresponding Calogero-

Sutherland Hamiltonian

HCS =
∑

i

(zi∂i)
2 +

1

α

∑

i<j

zi + zj
zi − zj

(zi∂i − zj∂j), (4)

where ∂i ≡ ∂/∂zi. Take the bosonic Laughlin state at ν = 1/2 (which corresponds

to the fermionic Laughlin state at ν = 1/3) for a concrete example. One can easily

check that
∏

i<j(zi − zj)
2 satisfies HCS with α = −2, which is related to the fact

that the bosonic (or the corresponding fermionic) wavefunction vanishes as (zi−zi)
2

[or (zi − zj)
3] when particle i approaches j. For two bosons, one obviously has

(z1 − z2)
2 = z21z

0
2 − 2z11z

1
2 + z01z

2
2 = 1 · S2(z

2
1z

0
2) + (−2) · S2(z

1
1z

1
2), (5)

which is an expansion of the polynomial wavefunction into a sum of symmetric

monomials. The N -particle wavefunction
∏

i<j(zi − zj)
2 can be expanded as

1 · SN (z2N−2
1 z2N−4

2 · · · z0N) + (−2) · SN (z2N−3
1 z2N−3

2 z2N−6
3 z2N−8

4 · · · z0N ) + · · · . (6)
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This crude example (perhaps with a more elaborate expansion) illustrates the idea

that a bosonic (fermionic) wavefunction can be expanded by a set of homogeneous

symmetric monomials (Slater determinants), which can be derived from a single

monomial, known as the root, using a squeezing rule, which lowers the relative an-

gular momentum and conserves the total angular momentum for the system with

rotational invariance. We choose a numeric string representation for the root config-

uration, which is simply the collection of occupation numbers of the single-particle

orbitals (zm in the quantum Hall context). The root configuration for the above

example of N -particle bosonic Laughlin state is, therefore, 1010 · · ·101 and for the

corresponding fermioic one 100100 · · ·1001. Let us use the convention that the left-

most digit corresponds to the z0 orbital, i.e., the droplet center. It is closely related

to the topological nature of the wavefunction that the mere knowledge of a Jack

parameter and a matching root configuration are enough to generate the coefficients

of all the descendant symmetric monomials (Slater determinant) numerically exact

– practically to more than 10 particles – with a recursive method.8

The FQH model wavefunctions can also be written as the correlators of cer-

tain primary fields in some conformal field theories. For example, the Laughlin

wavefunction at filling fraction ν = 1/M can be constructed by the chiral boson

conformal field theory (CFT) with a compactification radiusM .9 The primary fields

are vertex operators eimϕ(z)/
√

M , where ϕ(z) is a chiral boson field. Operators with

m = 1, 2, . . .M − 1 correspond to quasiholes with different charge, whose corre-

sponding conformal dimensions are ∆ = m2/(2M). It is, therefore, reasonable to

expect that the tunneling amplitude Γ as a function of system size N (with a given

tunneling distance d) may show scaling behavior, Γ ∼ Nβ , whose scaling exponent β

is related to the conformal dimension of the tunneling particle. Our previous work6

confirmed the hidden (due to the dominant single-particle effect) scaling behavior

of the quasihole tunneling amplitude, β = 1 − 2∆, which can be explained by the

effective field theory consideration that the tunneling amplitudes contains factors

of quasiparticles propagating along the opposite edges.

In the identification of the relation between the scaling exponent and the confor-

mal dimension of the corresponding quasiparticle, the exact calculation of the tun-

neling amplitude Γ = 〈Ψqh|T |ΨL〉/(
√

〈Ψqh|Ψqh〉
√

〈ΨL|ΨL〉) using the Jack polyno-

mial method plays a crucial role, which, in fact, motivated the effective field theory

interpretation.6 The exactness allowed the elimination of all finite-size uncertainties

with the conjecture of an exact tunneling amplitude at the small interedge limit,

at which we deform the N -particle system (with a puncture, or quasiholes, at the

center) into a ribbon, or topologically S1× [0, d] (d/lB ≪ N). This effectively erases

the dominant single-particle effect (i.e. the Gaussian Landau level form factor). In

this limit, for M = 3 or ν = 1/3, we conjectured6 that the tunneling amplitude for

the charge-e/3 quasihole is

2πΓ
e/M
L,M(N) =

N

M
B

(

N,
1

M

)

, (7)
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where M = 3 and N is the number of electrons. Here we introduce the beta func-

tion B(x, η) = Γ(x)Γ(η)/Γ(x + η) which, for large x and fixed η, asymptotically

approaches Γ(η)x−η , where Γ(x) is the Gamma function (not the tunneling ampli-

tude elsewhere). We verified numerically that the conjecture is exact for up to 10

electrons; therefore, asserting the conjecture is also exact for larger system, we obtain

the exact exponent β(e/3) = 1− 1/3 = 2/3 in the scaling behavior Γ(e/3) ∼ Nβ(e/3)

.

This is also verified to be applicable for M = 5.a In other words, based on the

scaling analysis we discussed earlier, we can compute the conformal dimension of

smallest charged quasiholes in the ν = 1/M Laughlin state to be ∆ = 1/(2M).

The quasi-one-dimensional ribbon limit essentially removes the unnecessary geo-

metrical information of the wavefunctions, and subsequently reveals a perfect scaling

behavior otherwise embedded in inaccuracy and deviations due to small system size.

A similar consideration, dubbed as the conformal limit, allows the opening of a full

gap in the entanglement spectra of systems on sphere geometry,10 in a way that

the low-lying levels showing the universal conformal field theory counting are well

separated from the higher Coulomb ones, which are not universal. In both cases,

we found that topology stands out after we suppress the geometrical information.

In other words, the topological information is encoded in the set of coefficients in

Eq. (6), while the geometrical information is encoded in the monomials, which may

be deformed, for example, to accommodate the geometry of shear transformation

and rotation.11

3. The edge quasihole tunneling amplitude in a Laughlin droplet

In the last section, we consider the tunneling amplitude of the bulk quasihole at the

center of the droplet. In fact, we can generalize the discussion to quasiholes located

elsewhere, or to edge excitations. The generalization is straightforward for the Jack

polynomial approach, which applies to low-lying excitations, such as the edge mode

in disk geometry12 and the magnetic-roton mode in sphere geometry.13 The study

of the tunneling properties of edge states (snΨL, n = 1, 2, 3, . . . ) is an important

tool for understanding the topological bulk states both from experimental and the-

oretical point of view. Here we focus on the tunneling amplitude Γ = 〈snΨL|T |ΨL〉,

which crossover smoothly from the tunneling of a bulk quasihole excitation to edge

excitations, as n decreases from N to 1.

The edge mode for the Laughlin state corresponds to a set of states whose root

configuration are: ...10010010001, ...10010001001, ...10001001001, etc., meaning one

0 (or a quasihole) can be inserted in any one of the 100 unit cells. The tunneling

problem we study here is the amplitude for the quasihole in these edge states to

tunnel to the outer edge, leaving the Laughlin state behind. Again, we focus on the

quasi-one-dimensional ribbon limit to look for a unified analytical solution. As we

have already demonstrated the exactness of the method elsewhere,6 we focus here

aEq. (7) also applies to the integer case (M = 1), in which the righthand side reduces to unity.
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on presenting the analytical conjecture on the tunneling amplitude, which has been

verified to be correct for all accessible system sizes.

For the consistency with Eq. (7), we define,

T (N) ≡ T (N, 1/M) =

√

2π

M
Γ
e/M
L,M(N) =

1

M

√

NB

(

N,
1

M

)

, (8)

for N ≥ 0 and specifically define T (0, 1/M) = 1/M . This allows us to unify the

edge and bulk quasihole tunneling amplitudes as

2πΓ
e/M
L,M (N,∆k) =

T (N)T (∆k)

T (N −∆k)
, (9)

where the integer ∆k is the angular momentum of the edge/quasihole excitation

(i.e., the number of 1s to the right of the inserted 0). For example, if we consider a

system with a root configuration 10010010010001001 and a Jack parameter α = −2,

the additional parameters can be read as N = 6, M = 3, and ∆k = 2. When

∆k = N , it recovers Eq. (7), as the additional 0 is located at the leftmost position.

Note when ∆k = 0, the tunneling amplitude measures the average density, which

is 1/M . In the thermodynamic limit, for edge excitations, i.e., ∆k = O(1), we find

2πΓ
e/M
L,M (N,∆k) = T (∆k) +O(1/N). (10)

For bulk excitations, i.e., ∆k = O(N), we find

2πΓ
e/M
L,M (N,∆k) ∼ N1−1/M . (11)

These results allow us to compute straightforwardly the tunneling amplitude for a

quasihole anywhere inside a Laughlin droplet to the edge.

4. Robustness of tunneling amplitude in the presence of realistic

edge confinement and disorder

So far we discussed the exact tunneling results using model wavefunctions generated

as Jack polynomials. In other words, the Laughlin wavefunction and its edge states

(including the single-quasihole state) are the eigenfunction of the Hamiltonian for

electrons with hard-core interaction. In a realistic GaAs/GaAlAs heterostructure,

the electrons interact with each other via a long-range coulomb repulsion and are

confined by a neutralizing background charge confinement from a doping layer at

a setback distance d. To see whether the tunneling amplitude is robust, we need

to verify the validity of Eq. (7) in the presence of Coulomb interaction. Based

on a previous study,14 we fix the setback distance of the background charge at

d = 0.5 lB, at which the system is in the Laughlin phase, i.e., the global ground

state has the same quantum number as that of the Laughlin state and a close-

to-unity overlap with the latter as well. On the other hand, the quasihole state is

produced by a Gaussian impurity potentialHW = Wg

∑

m exp(−m2/2s2)c+mcm with

a width s = 2 lB,
15 which models, e.g., the STM tip potential in an experiment. We
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Fig. 1. The tunneling amplitude for the Laughlin phase in the presence of long-range Coulomb
interaction and disorder in the quasi-one-dimensional ribbon limit. The exact results for the Laugh-
lin state [Eq. (7)] can be fit by a power law with an exponent 0.657 (the exact value should be
2/3, which is prone to finite-size error in fitting). In the realistic model with Coulomb interaction
and neutralizing charge confinement at a setback distance d = 0.5 lB (solid points), we obtain
almost the same Γ as using the model wavefunctions. When we include the disorder potential with
strength W , Γ remains unchanged at weak disorder, but deviates from the exact values at strong

disorder. The inset plots the energy gap between the ground state and the first excited state in
the same angular momentum subspace with M = 3N(N − 1)/2 of the pure Coulomb Hamiltonian
with d = 0.5 lB .

calculate the bulk quasihole tunneling amplitude up to 10 electrons and compare

it (deformed to the quasi-one-dimensional ribbon limit) with Eq. (7). As shown in

Fig. 1, the long-range coulomb interaction has very little effect on the tunneling

amplitude, hence the scaling behavior of Eq. (7) is, to a good approximation, valid

for the realistic interaction, as long as the system remains in the Laughlin phase.

In addition, a realistic system also contains impurity scatterings. Nevertheless,

the topological properties of an FQH state is believed to be robust against weak

disorder. To prove the statement regarding disorder, we consider an uncorrelated

random potential on each Landau level orbital, such thatHD =
∑

m Umc+mcm, where

Um denotes the random potential on the mth orbital, whose value is randomly

chosen in the range of [−W/2,W/2]. We compute the tunneling amplitudes by

averaging over more than 1000 random samples for a given disorder strength W .

As shown in Fig. 1, the tunneling amplitudes for weak disorder, i.e., W = 0.1,

are almost the same as that in the pure coulomb case for all accessible system

sizes. However, when we increase the strength of disorder gradually, the tunneling

amplitude Γ deviates significantly from the exact results for large enough system

size and therefore, the scaling hypothesis of Eq. (7) fails in the strong disorder case.

To quantitatively understand the disorder effect, we can define and compute the

energy gap for the system as the energy difference between the ground state (which
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is the Laughlin-like state) and the first excited state in the same subspace with a

total angular momentum 3N(N−1)/2. As shown in the inset of Fig. 1, when we fix

d = 0.5 lB, the energy gap has very little finite size fluctuations for N > 6; the gap

is around 0.06 e2/ǫlB. Therefore, disorder starts to affect the tunneling amplitudes

when the strength of disorder is significantly larger than the energy gap (up to

an O(1) prefactor). This, in return, suggests that the deviation of the tunneling

amplitude from the scaling behavior can be explored to study the transition of the

FQH phase to insulator, much like the Chern number study of the FQH-insulator

transition.16

5. Conclusions

In summary, we calculate the tunneling amplitude for quasihole in the Laughlin

phase, generalizing the previous result for the tunneling of a quasihole at the center

of a circular Laughlin droplet to an arbitrary location. This is achieved by consid-

ering the tunneling amplitudes between the Laughlin state and its accompanying

edge states. Using the exact Jack polynomial expansion, we showed that the bulk

and edge quasihole tunneling can be unified by a single equation (9) for any system

size. We also demonstrate that the quasihole tunneling amplitude is robust against

realistic considerations, such as the long-range coulomb interaction, neutralizing

background charge confinement, and moderate amount of disorder.
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