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Abstract
Bose–Fermi mixtures in one dimension are studied in detail on the basis of an
exact solution. Corresponding to three possible choices of the reference state in
the quantum inverse scattering method, three sets of Bethe-ansatz equations are
derived explicitly. The features of the ground state and low-lying excitations
are investigated. The ground state phase diagram caused by the external field
and chemical potential is obtained.

PACS numbers: 02.60.−x, 03.65.−w

1. Introduction

The study of exactly solvable models has been an important topic for four decades because
the perturbative approach is inapplicable for strongly correlated systems. ‘Particles with
δ-function interaction in one dimension’ is a simple but interesting model. Since Lieb and
Liniger [1] first solved a spinless Bose system with δ-function interaction, there has been
much more progress [2–12] in this field. In particular, when solving the 2-component Fermi
system, Yang [6] proposed the well-known Yang–Baxter equation which had a significant
impact on both physics and mathematics. As the 2-component system is mostly associated
with ‘spin-1/2’ particles that are conventionally referred to as the Fermi system, the coordinate
Bethe-ansatz has not been applied to the 2-component Bose system till recently [13], which is
motivated by a spinor Bose–Einstein condensate in magnetically trapped 87Rb [14].

Recent observation of the superfluid to Mott insulator transition in ultracold atoms in an
optical lattice [15] stimulated research interests related to strongly correlated atomic gases.
Most recently, the physics of ultracold Bose–Fermi mixtures [16] such as 7Li–6Li or 87Rb–40K
mixtures has become a remarkable topic [17–21]. It is therefore worthwhile to investigate the
features of the Bose–Fermi system on the basis of exact solutions. The mixed system of bosons
and fermions with δ-function interaction was discussed earlier in [10] where the ground state
energy and gapless fermionic excitations are calculated in the thermodynamic limit. However,
as we are aware, the ground state phase diagram under the influence of external fields and
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chemical potentials has not yet been studied. These properties have become more and more
important nowadays due to the rapid progress in the field of cold atomic physics.

In this paper, we study a one-dimensional cold atomic system of Bose–Fermi mixtures
systematically. Our paper is organized as follows. In the following section, we introduce
the model and derive its secular equation. In section 3, we diagonalize the secular equation
by means of the quantum inverse scattering method (QISM) for three cases. Consequently,
three different kinds of nested Bethe-ansatz equations are obtained. In section 4, we explicitly
analyse the ground state and the possible low-lying excitations. The energy–momentum
spectrum for each excitation is calculated numerically from the Bethe-ansatz equation. In the
last section, we study the system under the influence of magnetic fields and chemical potentials
for the particles to obtain the phase diagram.

2. The model and its secular equation

We consider a mixture of cold Bose gas and Fermi gas in one dimension. The Hamiltonian of
the system is described by the Gross–Pitaevskii functional

H =
∫ (∑

a

∂x�
∗
a ∂x�a + c

∑
a,b

�∗
a�a�

∗
b�b

)
dx (1)

where the natural unit is adopted for simplicity, c denotes the interaction strength and
a, b = 1, 2, 3 refer to the three components of SU(1|2) fields. This is an isotropic case
of the model considered by Cazallia et al [22] where an approximation method was employed.
We just consider this case because the anisotropic case is unintegrable. Among these three
fields, two obey the anti-commutation relation and one obeys the commutation relation. It is
convenient to consider the states that span a Hilbert space of N particles

|ψ〉 =
∑

x1,x2,...

ψa1,...,aN
(x1, x2, . . . , xN)�a1(x1) · · · �aN

(xN)|0〉.

The eigenvalue problem H|ψ〉 = E|ψ〉 becomes an N-particle quantum mechanical problem
with the first quantized Hamiltonian,

H =
N∑

i=1

∂2

∂x2
i

+ 2c
∑
i<j

δ(xi − xj ). (2)

Such a system can be solved by means of the Bethe-ansatz approach. Here we give a brief
description of the main idea of this approach. In the domain xi �= xj , the Hamiltonian (2)
reduces to that for free particles and its eigenfunctions are therefore just superpositions of
plane waves. When two particles collide, a scattering process occurs, which is supposed
to be a pure elastic process, i.e., exchange of their momenta. So, for a given momentum
k = (k1, k2, . . . , kN) the scattering momenta include all permutations of the components of k.
Because the Hamiltonian is invariant under the action of the permutation group SN , one can
adopt the following Bethe-ansatz wavefunction,

ψa(x) =
∑
P∈SN

Aa(P,Q) ei(P k|Qx) (3)

where a = (a1, a2, . . . , aN), with aj denoting the SU(1|2) component of the j th particles;
Pk denotes the image of a given k := (k1, k2, . . . , kN) by a mapping P ∈ SN ; (P k|Qx) =∑N

j=1 (P k)j (Qx)j ; and the coefficients A(P,Q) are functions of P and Q where Q denotes
the permutation such that 0 < xQ1 < xQ2 < · · · < xQN

< L. For the Bose–Fermi mixture, the
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wavefunction should be either symmetric or antisymmetric under permutation �j depending
on whether they involve Bose labels or Fermi labels:

(�jψ)a(x) = ±ψ�j a(x). (4)

The δ-function term in the Hamiltonian contributes a boundary condition across the hyper-
plane xQj

= xQj+1 . Substituting the Bethe-ansatz wavefunction into this boundary condition
and using the continuity condition together with the permutation symmetry, we obtain the
following relation,

Aa(�
jP,Q) = i[(P k)j − (P k)j+1]P j + c

i[(P k)j − (P k)j+1]P j − c
Aa(P,Q) (5)

where P j are the permutations between particles at xQj
and xQj+1 , which is given in

the appendix for concrete choice of Bose–Fermi labels. For example, if we consider
the wavefunctions of two particles, because of the different exchange symmetries, the
wavefunction of two bosons is 1√

2
(|ψ1〉|ψ2〉+ |ψ2〉|ψ1〉), and 1√

2
(|ψ1〉|ψ2〉− |ψ2〉|ψ1〉) for two

fermions. The permutations for two bosons are

P =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 ,

and −P for two fermions. The matrix relating to the various amplitudes in the same region
given in equation (5) is conventionally called the S-matrix

Sj,j+1 = i[(P k)j − (P k)j+1]P j + c

i[(P k)j − (P k)j+1]P j − c
.

The amplitudes in region Q and in its adjacent region Q′ are related by the R-matrix R = PS,

Aa1···ai ···aj ···aN
(Q′) = (Rij )b1...bN

a1...aN
Ab1...bN

(Q) = (Rij )
bibj

aiaj
Aa1···bi ···bj ···aN

(Q).

If x is a point in the region C(Q(i)), then x ′ = (x1, . . . , xQ1 + L, . . . , xN) is a point in the
region C(γQ(i−1)) with γ = �N−1�N−2 · · ·�2�1. Thus the periodic boundary condition
imposes a relation between the wavefunctions defined on C(Q(i)) and C(γQ(i−1)). Writing
out this relation in terms of equation (3), we find that the periodic boundary conditions are
guaranteed provided that A(P ; γQ(i−1)) ei(P k)1L = A(P ;Q(i)). After applying the R-matrix
successively, we obtain the following secular equation:

RQ1,QN · · · RQ1,Q(i+1)RQ1,Qi · · · RQ1,Q2A(P ;Q(i)) = e−i(P k)1LA(P ;Q(i)). (6)

3. Diagonalization by quantum inverse scattering method

To determine the spectrum, we should diagonalize the secular equation (6). This can be done
by diagonalizing the operator product on the left-hand side of equation (6), namely, solving
the eigenvalues of the operator

(Tj )
b1b2···bN

a1a2···aN
= (Rjj−1 · · · Rj1RjN · · ·Rjj+1)b1b2···bN

a1a2···aN
(7)

where

Rij = (αi − αj )I
ij − icP ij

αi − αj + ic
. (8)
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Since they satisfy the Yang–Baxter relation

Rkj (α − β)Rki(α)Rji(β) = Rji(β)Rki(α)Rkj (α − β) (9)

the diagonalization can be carried out by means of QISM. For equation (8), a 9×9 monodromy
can be defined in the conventional way,

(T )b1b2···bN ,υ
a1a2···aN ,µ =

∑
S1S2···SN−1

(R1A)b1,S1
a1,µ

(R2A)
b2,S2
a2,S1

· · · (RNA)
bN ,υ
aN ,SN−1

, (10)

which can be written as a 3 × 3 matrix in the auxiliary space,

T =
 A B1 B2

C1 D11 D12

C2 D21 D22

 , (11)

in which every matrix element is an operator in quantum space. It obeys the following RTT
relations,

R(λ − µ)T1(λ)T2(µ) = T2(µ)T1(λ)R(λ − µ) (12)

where T1 = T1 ⊗ I, T2 = I ⊗ T2 with I the 3 × 3 unitary matrix in quantum space.
Since the Bose–Fermi mixture is an SU(1|2) supersymmetric system, the application

of QISM becomes complicated. In the SU(3) case a unique nested Bethe-ansatz equation
was derived [23]. In the present case, however, there are three possibilities of choosing the
reference state (‘pseudo-vacuum’) and the successive orders of the other states, and hence
three types of nested Bethe-ansatz equations have to be derived. In the following, we will
consider those three cases.

3.1. BFF case

We first choose the Bose state as the reference state |1〉, and the other two states |2〉 and |3〉 are
Fermi states, then the permutation operator is easily written out (see P1 in (A.1)). This case
was once noticed by Sutherland [9] in the lattice model. Consequently, the RTT relation (12)
gives rise to two commutation relations between A and B, and eight commutation relations
between B and D. We can write them in the form of a tensor product,

A(λ) ⊗ (B1(µ)B2(µ))= k(µ − λ)

b(µ − λ)
(B1(µ)B2(µ)) ⊗ A(λ) − d(µ − λ)

b(µ − λ)
(B1(λ)B2(λ)) ⊗ A(µ)

(13)(
D11(λ) D12(λ)

D21(λ) D22(λ)

)
⊗ (B1(µ)B2(µ)) = (B1(µ)B2(µ)) ⊗

(
D11(λ) D12(λ)

D21(λ) D22(λ)

)

× a(λ − µ)

b(λ − µ)


1 0 0 0

0 − d
a

b
a

0

0 b
a

− d
a

0

0 0 0 1


− d(λ − µ)

b(λ − µ)
(B1(λ)B2(λ)) ⊗

(
D11(µ) D12(µ)

D21(µ) D22(µ)

)
(14)

where we used the definition

k(α) = α − ic

α + ic
, a(α) = 1, b(α) = α

α + ic
, d(α) = −ic

α + ic
.
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It is convenient to write the R-matrix in auxiliary space in terms of the generators of the
corresponding Lie algebra (see the appendix),

R(α) =


α

α+ic I − ic 2H1+H2+I
3

−ic
α+ic E−α1

−ic
α+ic E−(α1+α2)

−ic
α+ic Eα1

α
α+ic I + ic

α+ic
H2−H1+I

3
ic

α+ic E−α2

−ic
α+ic E(α1+α2)

ic
α+ic Eα2

α
α+ic I + ic

α+ic
I−H1−2H2

3

 ,

(15)

and to define a pseudo-vacuum as N particles in the highest weight state of the SU(1|2)

systems, i.e.,

|φ〉 =
N∏

i=1

⊗|1〉 (16)

with |1〉 =
(

1
0
0

)
, |2〉 =

(
0
1
0

)
and |3〉 =

(
0
0
1

)
. We have H1|1〉 = |1〉, E−α1 |1〉 = |2〉,

E−(α1+α2)|1〉 = |3〉, and null if the other operators act on the state |1〉. Thus the vertex
(15) becomes triangular when acting on the highest weight state. The eigenvalues of diagonal
terms of the monodromy can be obtained as the products of the values in each quantum space,
and hence the eigenvalues of operators A(k) and D(k) are

A(k)|φ〉 =
N∏

l=1

k − kl − ic

k − kl + ic
|φ〉 (17)

D(k)|φ〉 =
N∏

l=1

k − kl

k − kl + ic
|φ〉. (18)

Here

D(k) =
(

D11(k) D12(k)

D21(k) D22(k)

)
(19)

is the monodromy of SU(2) algebra nested in SU(1|2).
Employing the lowering operator B(λ) acting on the pseudo-vacuum, we construct an

eigenstate

|ω〉 = B(λ1)B(λ2) · · · B(λM)|φ〉 (20)

where B(λ) refers to one of the B1(λ) or B2(λ) in the monodromy (11). This state can be
used to diagonalize the secular equation. The eigenvalue on the left-hand side of the secular
equation (6) can be written as the eigenvalue of the trace of the SU(1|2) monodromy matrix:

SU(1|2)(k; λ1, λ2, . . . , λM)|ω〉
= Tr(T )|ω〉 = (A(k) + Tr(D(k)))|ω〉

=
N∏

l=1

k − kl − ic

k − kl + ic

M∏
α=1

k(λα − k)

b(λα − k)
|ω〉

+
N∏

l=1

k − kl

k − kl + ic

M∏
α=1

a(k − λα)

b(k − λα)
· ′

SU(2)|ω〉. (21)
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From this nested Bethe-ansatz structure we can see that there is an SU(2) substructure
in the SU(1|2) system when the boson state is chosen as the reference state. In terms of the
Ř-matrix of SU(2) appearing in equation (14)

ř =


1 0 0 0

0 − d
a

b
a

0

0 b
a

− d
a

0

0 0 0 1

 (22)

and the permutation matrix of SU(2)

p =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 (23)

we have the R-matrix r = p · ř . Writing it out in auxiliary space in terms of spin operators in
quantum space,

r(α) =
( α+ic/2

α+ic I + ic/2
α+ic σz

ic
α+ic σ

−

ic
α+ic σ

+ α+ic/2
α+ic I − ic/2

α+ic σz

)
,

we obtain the fundamental commutation relation from the RTT relations, r · T̃1 · T̃2 = T̃2 · T̃1 ·r ,
as follows,

A′(λ)B ′(µ) = a′(µ − λ)

b′(µ − λ)
B ′(µ)A′(λ) − d ′(µ − λ)

b′(µ − λ)
B ′(λ)A′(µ)

D′(λ)B ′(µ) = a′(λ − µ)

b′(λ − µ)
B ′(µ)D′(λ) − d ′(λ − µ)

b′(λ − µ)
B ′(λ)D′(µ)

(24)

where

a′(α) = 1, b′(α) =b

a
= α

α + ic
, d ′(α) = −d

a
= ic

α + ic

and the D(k) matrix, a sub-matrix of the SU(1|2) matrix, is regarded as the SU(2) monodromy,
namely

T̃ (k) =
(

A′(k) B ′(k)

C ′(k) D′(k)

)
where A′(k) = D11(k), B ′(k) = D12(k), C ′(k) = D21(k),D′(k) = D22(k).

According to the procedure of QISM [12], the pseudo-vacuum is defined as the product
of the highest weight states of SU(2) |φ′〉 = ∏M

(1
0

)
which fulfils

A′(k)|φ′〉 =
M∏

α=1

a′(k − λα)|φ′〉, D′(k)|φ′〉 =
M∏

α=1

b′(k − λα)|φ′〉.

In terms of the lowering operator B ′(k−λα) in SU(2) monodromy, one can construct a general
state

|ω′〉 = B ′(k − λ1)B
′(k − λ2) · · · B ′(k − λM ′)|φ′〉. (25)
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Using the fundamental commutation relations (24), one obtains that

′
SU(2)(k;µ1, µ2, . . . , µM ′)|ω′〉 = Tr(T̃ (k))|ω′〉

=
 M∏

α=1

a′(k − λα)

M ′∏
β=1

a′(µβ − k)

b′(µβ − k)
+

M∏
α=1

b′(k − λα)

M ′∏
β=1

a′(k − µβ)

b′(k − µβ)

 |ω′〉

=
 M ′∏

l=β

µβ − k + ic

µβ − k
+

M∏
α=1

k − λα

k − λα + ic

M ′∏
β=1

k − µβ + ic

k − µβ

 |ω′〉. (26)

The unwanted terms vanish as long as the following equations hold:

−
M ′∏
β=1

µc − µβ − ic

µc − µβ + ic
=

M∏
α=1

µc − λα

µc − λα + ic
. (27)

As a result, equation (21) becomes

SU(1|2)(k; λ1, λ2, . . . , λM)

=
N∏

l=1

k − kl − ic

k − kl + ic

M∏
α=1

k(λα − k)

b(λα − k)
+

N∏
l=1

k − kl

k − kl + ic

M∏
α=1

a(k − λα)

b(k − λα)
· ′

SU(2)

=
N∏

l=1

k − kl − ic

k − kl + ic

M∏
α=1

λα − k − ic

λα − k
+

N∏
l=1

k − kl

k − kl + ic

M∏
α=1

k − λα + ic

k − λα

×
 M ′∏

β=1

µβ − k + ic

µβ − k
+

M∏
α=1

k − λα

k − λα + ic

M ′∏
β=1

k − µβ + ic

k − µβ

 . (28)

To get rid of the unwanted terms in the expansion, the following equations need to be satisfied:

1 = −
N∏

l=1

λγ − kl − ic

λγ − kl

M ′∏
β=1

µβ − λγ

µβ − λγ + ic
. (29)

It is convenient to redefine the parameter λ′
γ by λγ − ic/2. Equations (29) and (27) for the

complete cancellation of the unwanted terms appearing in both procedures, together with the
relation resulting from periodic boundary conditions, e−ikαL = SU(1|2)(k; λ1, λ2, . . . , λM)

give rise to the Bethe-ansatz equations

eikj L = −
N∏

l=1

kj − kl + ic

kj − kl − ic

M∏
α=1

kj − λα − ic/2

kj − λα + ic/2

1 = −
N∏

l=1

λγ − kl − ic/2

λγ − kl + ic/2

M ′∏
β=1

λγ − µβ + ic/2

λγ − µβ − ic/2
(30)

1 = −
M∏

α=1

µc − λα − ic/2

µc − λα + ic/2

M ′∏
β=1

µc − µβ + ic

µc − µβ − ic

which determine the spectrum of the SU(1|2) system.

3.2. FBF case

We now consider the second case, in which the Bose state is chosen as the second state, while
the first and the third are Fermi states. From the permutation operator P2 (see (A.2) ), we can
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get the R-matrix (8). Using the same monodromy as in equation (11) and the RTT relation
(12), we get the following communication relations:

A(λ) ⊗ (B1(µ)B2(µ)) = a(µ − λ)

b(µ − λ)
(B1(µ)B2(µ)) ⊗ A(λ)

− d(µ − λ)

b(µ − λ)
(B1(λ)B2(λ)) ⊗ A(µ)

(
1 0
0 −1

)
(31)

(
D11(λ) D12(λ)

D21(λ) D22(λ)

)
⊗ (B1(µ)B2(µ)) = (B1(µ)B2(µ)) ⊗

(
D11(λ) D12(λ)

D21(λ) D22(λ)

)
k(λ − µ)

b(λ − µ)
· ř

− d(λ − µ)

b(λ − µ)
(B1(λ)B2(λ)) ⊗

(
D11(µ) D12(µ)

D21(µ) D22(µ)

)(
1 0
0 −1

)
. (32)

In this case, we can see that there is a nested SU(1|1) substructure in the SU(1|2) system.
The Ř-matrix of SU(1|1) in equation (32) reads

ř =


1 0 0 0

0 d
k

b
k

0

0 b
k

d
k

0

0 0 0 a
k

 . (33)

In this SU(1|1) substructure, the Bose state is chosen as the highest weight state |φ′〉 = ∏M
(1

0

)
when the QISM [12] is applied. We can obtain the Bethe-ansatz equation by the similar
procedure applied in the previous case,

eikj L = −
M∏

α=1

kj − λα + ic/2

kj − λα − ic/2

1 = −
N∏

l=1

λγ − kl − ic/2

λγ − kl + ic/2

M ′∏
β=1

µβ − λγ − ic/2

µβ − λγ + ic/2
(34)

1 = −
M∏

α=1

µc − λα + ic/2

µc − λα − ic/2
.

3.3. FFB case

We turn to the case where the Bose state is chosen as the third state, and one of the Fermi states
as the reference state, the other Fermi state as the second state. In terms of the permutation
matrix P3 (see (A.3)), we can get the R-matrix (8). The RTT relation (12) gives rise to the
following communication relations:

A(λ) ⊗ (B1(µ)B2(µ)) = a(µ − λ)

b(µ − λ)
(B1(µ)B2(µ)) ⊗ A(λ)

− d(µ − λ)

b(µ − λ)
(B1(λ)B2(λ)) ⊗ A(µ)

(
1 0
0 −1

)
(35)
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(
D11(λ) D12(λ)

D21(λ) D22(λ)

)
⊗ (B1(µ)B2(µ))

= (B1(µ)B2(µ)) ⊗
(

D11(λ) D12(λ)

D21(λ) D22(λ)

)
a(λ − µ)

b(λ − µ)


1 0 0 0

0 d
a

b
a

0

0 b
a

d
a

0

0 0 0 k
a


− d(λ − µ)

b(λ − µ)
(B1(λ)B2(λ)) ⊗

(
D11(µ) D12(µ)

D21(µ) D22(µ)

) (−1 0
0 1

)
. (36)

They are almost the same as that in the ‘FBF’ case; there is also a nested SU(1|1) substructure
whose ř matrix appears in equation (36). We obtain the following nested Bethe-ansatz
equation,

eikj L = −
M∏

α=1

kj − λα + ic/2

kj − λα − ic/2

1 = −
N∏

l=1

λγ − kl − ic/2

λγ − kl + ic/2

M∏
α=1

λγ − λα + ic

λγ − λα − ic

M ′∏
β=1

µβ − λγ + ic/2

µβ − λγ − ic/2
(37)

1 = −
M∏

α=1

µc − λα − ic/2

µc − λα + ic/2
,

which were also derived in [10] by means of the coordinate Bethe-ansatz.

4. The ground state and its low-lying excitations

4.1. BFF case

In this case, the boson state is chosen as the reference state. There are N particles in all. After
M lower operators B act on the reference state, there are just N − M bosons. Analogously,
after M ′ lower operators act on the second state, there are M − M ′ fermions of species 1 and
M ′ fermions of species 2. We follow the same analysis as in the other two cases. Taking the
logarithm of (30), we have

kjL = 2πIj +
N∑

l=1

�1(kj − kl) +
M∑

α=1

�−1/2(kj − λα)

2πJγ =
N∑

l=1

�−1/2(λγ − kl) +
M ′∑
β=1

�1/2(λγ − µβ) (38)

2πJ ′
c =

M∑
α=1

�−1/2(µc − λα) +
M ′∑
β=1

�1(µc − µβ)

where �n(x) = −2 tan−1(x/nc) and Ij is an integer (half-odd integer) if N − M − 1 is even
(odd), while Jγ is an integer (half-odd integer) if N −M ′ −1 is even (odd), and J ′

c is an integer
(half-odd integer) if M − M ′ − 1 is even (odd). Once all roots {kj , λγ , µc} are solved from
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the above equations (38) for a given set of quantum numbers {Ij , Jγ , J ′
c}, the energy and the

momentum will be calculated by

E =
N∑

j=1

k2
j , P = 2π

L

 N∑
j=1

Ij −
M∑

γ=1

Jγ −
M ′∑
c=1

J ′
c

 . (39)

4.1.1. The ground state. It is easy to show that the right-hand side of the first equation
in (38) is a monotonically increasing function of kj , i.e., if Ii < Ij , then ki < kj . Thus
the configuration of {Ij } for the ground state is given by successive integers of half-integers
symmetrically arranged around zero. Given a set of quantum numbers Ij , Jγ , J ′

c with the
solutions kj , λγ , µc, it is useful to consider the weak-coupling limit c → 0+. Due to
�±n(x) → ∓π sgn(x), equations (38) become

2πIj = kjL +
N∑

l=1

π sgn(kj − kl) −
M∑

α=1

π sgn(kj − λα)

2πJγ =
N∑

l=1

π sgn(λγ − kl) −
M ′∑
β=1

π sgn(λγ − µβ) (40)

2πJ ′
c =

M∑
α=1

π sgn(µc − λα) −
M ′∑
β=1

π sgn(µc − µβ).

The subscripts of the rapidities kj , λγ , µc are chosen in such a way that their quantum numbers
kj , λγ , µc are all ranged in increasing order. Then we have

2(Ij+1 − Ij − 1) = (kj+1 − kj )
L

π
−

M∑
α=1

[sgn(kj+1 − λα) − sgn(kj − λα)]

2(Jγ +1 − Jγ ) =
N∑

l=1

[sgn(λγ +1 − kl) − sgn(λγ − kl)] −
M ′∑
β=1

[sgn(λγ +1 − µβ) − sgn(λγ − µβ)]

2(J ′
c+1 − J ′

c + 1) =
M∑

α=1

[sgn(µc+1 − λα) − sgn(µc − λα)]. (41)

Thus, if J ′
c+1 − J ′

c = m, there will be m + 1 solutions of λα between µc and µc+1, and
if Ij+1 − Ij = n, correspondingly with λα satisfying kj < λα < kj+1, then we will get
kj+1 −kj = 2πn

L
; in contrast, with no λα between kj and kj+1 we will have kj+1 −kj = 2π(n−1)

L
.

Obviously, such a λα always repels the k rapidity away, leading to a rise in the energy. Thus
the ground state of this system should have no λα lying in kj .

In the strong-coupling limit c → ∞, we have tan−1 x
c

� x
c
. Substituting these into the

secular equations (38) for the ground state (M = 0, M ′ = 0) and the low-lying excited state
(M = 1,M ′ = 0), the secular equations become

kjL = 2πIj − 2
N∑

l=1

kj − kl

c
k′
jL = 2πI ′

j − 2
N∑

l=1

k′
j − kl

c
+ 2

k′
j − λ1

c/2
.

Here we change the ground state by adding one λα which leads to Ij − I ′
j = 1/2. From the

two equations above we can get

(kj+1 − kj )L

[
1 +

2N

cL

]
= 2π (k′

j+1 − k′
j )L

[
1 +

2N − 4

cL

]
= 2π. (42)
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Figure 1. The density of state in k space for the ground state (left), adding one fermion (middle),
and adding three fermions (right). The distribution changes from a histogram to a narrow peak
gradually for the coupling from strong to weak. The figure is plotted for c = 100, 10, 1, 0.1.

In order to analyse the low-lying excited characters of the system more conveniently, we
introduce density of roots

ρ(kj ) = 1

L(kj+1 − kj )
, σ (λγ ) = 1

L(λγ +1 − λγ )
, ω(µc) = 1

L(µc+1 − µc)
.

In the thermodynamics limit, we have ρ(k) = 1
L

dI (k)

dk
, corresponding to σ(λ) = 1

L

dJ (λ)

dλ
and

ω(µ) = 1
L

dJ ′(µ)

dµ
. In terms of these densities, the energy and the momentum per length are

given by

E/L =
∫

k2ρ(k) dk, P/L =
∫

kρ(k) dk (43)

while N,M and M ′ are determined by

N/L =
∫

ρ(k) dk, M/L =
∫

σ(λ) dλ, M ′/L =
∫

ω(µ) dµ (44)

where Kn(x) = 1
π

nc/2
n2c2/4+x2 the density of the state satisfies the integral equation

ρ0(k) = 1

2π
+

∫ kF

−kF

K2(k − k′)ρ0(k
′) dk′ (45)

in the thermodynamic limit, where ρ0(k) and kF are the density and integration limit for the
ground state, respectively. We solved the secular equation for 42 particles with M = M ′ = 0
numerically, and the density of the ground state is depicted in figure 1 (left) for different
coupling constants.

Comparing with the ground state, we plot the spectrum for the low-lying excitation
(M = 1,M ′ = 0) in figure 1 (middle). The density of state is slightly compressed compared
with figure 1 (middle). It is not obvious from numerical results in figure 1 (middle) compared
to figure 1 (left), so we increase M from 1 to 3, and the curves are depressed more evidently
in the system with N = 42 (figure 1 (right)). As the value of M rises, the number of fermions
rises correspondingly, and the larger the number of fermions, the higher the energy should
be. As a result, the ground state contains only bosons which agrees with the results of our
asymptotic analysis.

4.1.2. Particle–hole excitation. The quantum numbers for the ground state in the N-particle
system are {Ij } = {−(N − 1)/2, . . . , (N − 1)/2}, {Jγ } = {J ′

c} = empty. If we add a hole
to the ground state, then the quantum numbers take the values I1 = −(N − 1)/2 + δ1,j for
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Figure 2. Particle–hole excitation for c = 1.0 (left) and c = 10.0 (right).

(1 � j1 � N), Ij = Ij−1 + δj,j1 for (j = 2, . . . , N − 1), IN = I0, (I0 > (N − 1)/2); we
call it the particle–hole excitation. In figure 2 the excitation spectrum is plotted with coupling
numbers (c = 1.0, 10.0).

In the thermodynamic limit, we use the expression ρ(k) = ρ0(k) + ρ1(k)/L, then
removing one I from the original symmetric sequence and adding a new In outside it, we have

ρ1(k) + δ(k − k) =
∫

K2(k − k)ρ1(k
′) dk′ + K2(k − kp). (46)

The excited energy consists of two terms �E = 1
L

∫
ρ1(k)k2 dk + 1

L
k2
p = ξh(k) + ξa(kp),

where ξh is holon’s energy and ξa(kp) is particle’s energy, and they can be calculated by

ρh
1 (k, k) =

∫
K2(k − k′)ρh

1 (k′ − k) dk′ − K2(k − k)

ξh(k) = −k
2

+
∫ kF

−kF

k2ρh
1 (k, k) dk.

(47)

4.1.3. Adding one fermion. If we add one fermion into the ground state, this excitation can
be characterized by moving the quantum number J1 in the following region:

−(N − 1)/2 < J1 < (N − 1)/2.

We describe this phenomenon in figure 3(a). Replacing one boson by one fermion
corresponds to a 2-parameter excitation. Its energy is given by �E = ∫

k2ρc
1(k, λ) dk with

ρ1(k) solving

ρ1(k) + δ(k − k) =
∫

K2(k − k′)ρ1(k
′) dk′ + K1(k − λ1). (48)

Then we have one-fermion excitation �E = ξh(k) + ξc(λ), where ξh(k) is the same as
equations (47) and ξc is defined by ξc(λ) = ∫

k2ρc
1(k, λ) dk with

ρc
1(k, λ) =

∫ kF

−kF

K2(k − kl)ρ
c
1(kl, λ) dkl − K1(k − λ1). (49)

4.1.4. Two-fermion excitation. If two spin-up fermions or two spin-down fermions are
permitted in this system, then the arrangement of their quantum numbers is

−(N − 1)/2 � J1 � J2 � (N − 1)/2.

Numerical calculation for this type of excitation is shown in figure 3(b). Furthermore, if
we introduce one spin-up and one spin-down fermions in this system, the results are the same
as figure in 3(b). Comparing to the system of pure bosons, we found that such excitation is
similar to isospinon–isospinon excitation in a two-band SU(2) system [24].
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Figure 3. Top panels show the one-fermion excitation for c = 1.0 (left) and c = 10.0 (right);
bottom panels show the two-fermion excitation for c = 1.0 (left) and c = 10.0 (right).

4.2. FBF case

From equations (34), we know that there are N − M fermions of species 1,M − M ′ bosons
and M ′ fermions of species 2. Taking the logarithm of equations (34), we get

kjL = 2πIj +
M∑

α=1

�1/2(kj − λα)

2πJγ =
N∑

l=1

�−1/2(λγ − kl) +
M ′∑
β=1

�1/2(λγ − µβ) (50)

2πJ ′
c =

M∑
α=1

�−1/2(µc − λα).

The quantum number Ij takes integer or half-integer values, depending on whether M is
even or odd, and J ′

c take half-integer (integer) values when M is even (odd). Whereas Jγ

is integer (half-integer), if N − M ′ − 1 is even (odd). In the weak-coupling limit, c → 0+,
�1/2(x) → −π sgn(x), and �−1/2(x) → π sgn(x) for x � 1, hence equations (50) become

2Ij = kjL

π
+

M∑
α=1

sgn(kj − λα)

2Jγ =
N∑

l=1

sgn(λγ − kl) −
M ′∑
β=1

sgn(λγ − µβ) (51)

2J ′
c =

M∑
α=1

π sgn(µc − λα) −
M ′∑
β=1

sgn(µc − µβ).
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On choosing Ij , Jγ , J ′
c in an increasing order, for a given M and M � N with the rules of

Young tableau, the minimum value on the left-hand side of the third equation of equations (51)
is −M + 2. Therefore, the smallest λα must be smaller than the smallest µc. Otherwise the
left-hand side would be −N , and if we take the maximum value of the left-hand side M − 2,
correspondingly the largest λα must be larger than the largest µc. In other words, the presence
of µc is only allowed in λ space. Furthermore, we can obtain |Jc| � (N − M ′)/2, when there
is no spin-down fermion (M ′ = 0); all Jγ are likely to stay in the Ij sequence.

Supposing the rapidities kj , λγ , µβ are in increasing order as Ij , Jγ , J ′
c, then we have

2(Ij+1 − Ij ) = (kj+1 − kj )L

π
−

M∑
α=1

[sgn(kj+1 − λα) − sgn(kj − λα)]

2(Jγ +1 − Jγ ) =
N∑

l=1

[sgn(λγ +1 − kl) − sgn(λγ − kl)] −
M ′∑
β=1

[sgn(λγ +1 − µβ) − sgn(λγ − µβ)]

2(J ′
c+1 − J ′

c) =
M∑

α=1

[sgn(µc+1 − λα) − sgn(µc − λα)].

(52)

Therefore, let Ij+1 − Ij = n and there will be kj+1 − kj = 2π(n − 1)/L existing λα between
kj and kj+1. Otherwise kj+1 − kj = 2πn/L. This means that existing λα in kj space will
decrease the system’s energy, so the ground state should have more λα . If J ′

c+1 − J ′
c = m, we

know there will be m solutions λα satisfying µc < λα < µc+1. When Jγ +1 − Jγ = m′,m′ is
the integer which equals or surpasses 1, then there must be some kj lying in neighbouring λγ ,
and the larger the number of µβ between λγ and λγ +1 we have, the larger the number of kj we
hope. If m′ is large enough, we wish that kj be large enough too, and µβ be small enough.
When m′ equals 1, there is only one kj between λγ and λγ +1, this state contains no µβ ; that is
to say k and λ alternate.

Then in the strong-coupling limit c → ∞, tan−1(x/c) → x/c and equations (50) give
rise to

kjL = 2πIj − 2M
kj − λα

c/2
.

Furthermore, the new form will be

(kj+1 − kj )L

[
1 +

4M

cL

]
= 2π. (53)

From the formula above, we know if M approaches N,�k = kj+1 − kj is the smallest, so is
the energy. Therefore, the M = N state is the ground state.

We describe the density of ground state by numerical approaches, and find that this is the
same as figure 1 (left). If we permit M = N − 3, i.e., there are three spin-up fermions lying
in the ground state, the density of state is also shown in figure 1 (right). It is obvious that the
more the fermions lying in this system, the higher the energy will be. Thus the ground state
is exactly all bosons without any fermion, which verifies the analysis in case 1. Furthermore,
we remove one of the I ′ from the ground state sequence and add a ‘new’ I0 outside. Excited
states are obtained by varying the quantum number as

Ij = −(N − 1)/2, . . . ,−(N − 1)/2 + i − 1,−(N − 1)/2 + i + 1, . . . , (N − 1)/2, I0,

Jγ = −(N − 1)/2, . . . , (N − 1)/2,

and consequently we get the excitation spectrum which is not different from figure 2.
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For this case, the excitation of adding one fermion is obtained from M = N − 1, which
contains one free parameter in the I sequence and one free parameter in the J sequence. Thus
the order of quantum numbers is

I1 = −N/2 + 1 + δj1,1 Ij = Ij−1 + 1 + δj1,j (j = 2, . . . , N)

J1 = −N/2 + δα1,1, Jα = Jα−1 + 1 + δα,α1 (α = 2, . . . ,M)

where 1 � j1 � N + 1, 1 � α1 � M + 1. The excitation spectrum is shown in figure 3(a),
which is also consistent with the excitation of adding one fermion in case 1.

Comparing to case 1, when we add two spin-up fermions (M = N − 2), there are two
free parameters in the J sequence. The result is depicted in figure 3(b).

4.3. FFB case

There are N − M fermions of species 1,M − M ′ fermions of species 2 and M ′ bosons in
equations (37). Also taking the logarithm of these equations we obtain

kjL = 2πIj +
M∑

α=1

�1/2(kj − λα)

2πJγ =
N∑

l=1

�−1/2(λγ − kl) +
M∑

α=1

�1(λγ − λα) +
M ′∑
β=1

�−1/2(λγ − µβ) (54)

2πJ ′
c =

M∑
α=1

�−1/2(µc − λα)

where Ij is an integer (half-odd integer) if N −M − 1 is even (odd), Jγ is an integer (half-odd
integer) if N − M − M ′ − 1 is even (odd), and J ′

c is an integer (half-odd integer) if M − 1 is
even (odd).

Considering the weak-coupling limit c → 0+, we have

2(Ij+1 − Ij ) = (kj+1 − kj )L

π
+

M∑
α=1

[sgn(kj+1 − λα) − sgn(kj − λα)]

2(Jγ +1 − Jγ + 1) =
N∑

l=1

[sgn(λγ +1 − kl) − sgn(λγ − kl)]

+
M ′∑
β=1

[sgn(λγ +1 − µβ) − sgn(λγ − µβ)]

2(J ′
c+1 − J ′

c) =
M∑

α=1

[sgn(µc+1 − λα) − sgn(µc − λα)].

(55)

If we set J ′
c+1 −J ′

c = m, there will be m λ′
αs satisfying µc < λα < µc+1. Letting Ij+1 −Ij = n,

if there is a λα satisfying kj < λα < kj+1, we will get kj+1 − kj = 2π(n − 1)/L, otherwise
kj+1 − kj = 2πn/L. From those above, we find that adding a λα into the kj space will expand
the distance of neighbouring particles and lead to decrease of the energy. Thus the more λα

lying between kj and kj+1, the lower the energy will be. Letting Jγ +1 − Jγ = n′, there will
be n′ + 1 solutions of kl and µβ satisfying λγ < kl , µβ < λγ +1, where n′ is the integer which
equals or surpasses 1, i.e., n′ = 1. Then there will be two fermions or two bosons or one
fermion and one boson between λγ and λγ +1. As we always set the distance between the
neighbouring quantum numbers as 1, the most reasonable state should be one fermion and one
boson between λγ and λγ +1.
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Figure 4. The phase diagram of free particles. The vertical axis stands for the external magnetic
field, and the horizontal axis stands for the ratio of chemical potential between bosons (µb) and
fermions (µf ). The region ‘B’ stands for the state with merely bosons. ‘BF1’ means the mix
state of bosons and the spin-up fermions. ‘BF2’ means the mix state of bosons and the spin-down
fermions. ‘F1F2’ stands for the mix state of bosons and two kinds of fermions, but N↑ �= N↓.
The region ‘S’ means the spin singlet state, i.e., N↑ = N↓. The region ‘F’ means that there are no
bosons in the ground state.

Therefore, the state of M = N,M ′ = N is a boson state which has the lowest energy.
This result coincides with parts of Lai’s [10] results. The density of the ground state is the
same as figure 1 (left). When M ′ = N − 1,M = N , i.e., there is one spin-up fermion in the
ground state, we have the same result as figure 1 (middle). And the more spin-up fermions
there are, the higher the energy should be. The particle–hole excitation spectrum is as in
figure 2. Due to the restriction given by the Young tableau, M = N − 2 gives the excitation
of adding one spin-up and one spin-down fermion, and exactly there are three holes in the J

sequence. This excitation is depicted in figure 3(b). It also sustains the analysis of case 1.

4.4. The consistency of the three cases

In our analytic and numerical results, the density of ground state (figure 1 (left)) and the
energy–momentum spectrum of low-lying excitations (figure 3(a) and (b)) in the three cases
are the same, and the ground states for all the three cases are the states with merely bosons;
i.e., in the BFF case, the ground state is ‘M = M ′ = 0’, ‘M = N,M ′ = 0’ for the FBF case
and ‘M = M ′ = N ’ for the FFB case, they are all merely boson states. Thus we conclude
that the properties of this multi-component system in one dimension are independent of the
reference state which we choose, which manifests the consistency of these cases. This kind
of equivalence was noticed in the so-called supersymmetry t–J model [25].

5. The ground state phase diagram in the presence of external magnetic fields

We take into account both the chemical potentials and the external magnetic fields which bring
about the Zeeman splitting for fermions. First, we analyse two limit cases: the case of free
particles and the case of particles with infinitely strong interaction. We have obtained the
phase diagram as figures 4 and 5.
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Figure 5. The phase diagram of particles with the strong-coupling limit c → ∞.

5.1. Weak-coupling limit

When c → 0, we can treat these particles as free particles. Thus in the ground state, only
fermions have non-zero momentum because of the Pauli excluding principle. We plot the
phase diagram in figure 4 for 42 particles. The region ‘S’ comprises some rhombi that
stands for different numbers of Fermi pairs (1, 3, 5, 7, . . .). We take two rhombi (3 and
5 pairs of fermions) for example. In the valley region between them (here we consider h >

0), there are 5 spin-up and 3 spin-down fermions. Thus on the left boundary of this valley, the
energy of 3 pairs of spin singlet fermions equals that of 5 spin-up plus 3 spin-down fermions.
Because there are N − M bosons, M − M ′ spin-up fermions, and M ′ spin-down fermions,

H3↑3↓ = E33 − µB

(
(N − M) +

µf

µB

M

)
− h

2
(M − 2M ′)

= 2

(
L

2π

)2

− µB

(
36 + 6

µf

µB

)
. (56)

Analogously,

H5↑3↓ = E53 − µB

(
(N − M) +

µf

µB

M

)
− h

2
(M − 2M ′)

= 12

(
L

2π

)2

− µB

(
34 + 8

µf

µB

)
− h. (57)

Thus the phase boundary can be described as H3↑3↓ = H5↑3↓, which reduces to 2� + h =
10

(
L

2π

)2
. Similarly, the equation of the right boundary is 2� − h = 8

(
L

2π

)2
in which

� = µf − µB .

5.2. Strong-coupling limit

When the intensity of interaction approaches infinity, any two particles cannot stay in the same
state. Thus there should be a much stronger excluding force than the Pauli principle. Because
the energy of N particles (N −M bosons, M −M ′ spin-up fermions, M ′ spin-down fermions)
is H = E0 − µB

(
(N − M) + µf

µB
M

) − h
2 (M − 2M ′), when the direction of the magnetic field

is along the spin-up (h > 0) direction, the spin-down fermions cannot appear in the ground
state. Therefore, in region ‘BF1’, there are only fermions with spin up and bosons; and in
region ‘F1’, there are N fermions with spin up. The same analysis holds when h < 0.
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Figure 6. A sketch of phase when interaction strength c = 1.

5.3. General case

In the case of general coupling, this model satisfies equation (30). We solve it within the rules
of the Young tableau (N − M � M − M ′ � M ′′), thus the case of all the particles being
fermions in the ground state cannot be achieved here. And we only computed the case of
h > 0 because of symmetry. As shown in figure 6, the phase boundary between ‘B’ and ‘BF1’
is the same as that in the two limit cases above, which intersects with the h-axis at h = 2µB .
The boundary between ‘BF1’ and ‘BF1F2’ can be divided into two parts from µf /µB ≈ 1.5.
The left part has some fluctuations which means adding a pair of spin-up fermions on ‘BF1F2’
side. The highest point (µf /µB ≈ 1.5) stands for 19 spin-up and 1 spin-down fermion.
According the Young tableau, it cannot add a spin-up fermion pair on the ‘19 up 1 down’ state
any more. Thus when µf /µb > 1.5, we can only add the spin-down Fermi pair. This is the
reason why there is an inflexion at µf /µB ≈ 1.5. We figure out an outline of the spin singlet
phase ‘F’, in which we can also see that there are some small fluctuations which stand for
adding a pair of spin singlet fermions. It is somewhat similar to the free-particle case. Because
of the Pauli excluding principle, only two fermions with different spins can stay in the same
state. Hence in the spin singlet phase, the pair numbers are 1, 3, 5, . . . along the horizontal
axis. From µf /µB ≈ 6 on, the pair number equals 14, which is the largest pair number we
can get here.

6. Summary and discussion

In summery, we have explicitly derived the Bethe-ansatz equation for the model of one-
dimensional Bose–Fermi mixture by means of QISM. We analysed the properties of the
ground state and the low-lying excitations on the basis of the Bethe-ansatz equations. We
found that the ground state of this system is the state with merely bosons. The low-lying
excitations were discussed extensively. The energy–momentum spectrum for three types
of excitations, holon–particle, one fermion, two fermions, were plotted for c = 10.0 and
c = 1.0. We discussed the phase diagram of the ground state in the presence of external
magnetic fields and chemical potentials, from which we can know about the populations of
bosons and fermions at a given magnetic field and chemical potential.
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Appendix. Permutation matrices and the generators of SU (3) Lie algebra

For the BFF case, the permutation matrix reads

P1 =



1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 −1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 −1


. (A.1)

For the FBF case, it reads

P2 =



−1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 −1 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 −1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 −1


. (A.2)

For the FFB case, it reads

P3 =



−1 0 0 0 0 0 0 0 0
0 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 −1 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1


. (A.3)

The generators for SU(3) Lie algebra are given by

H1 =
1 0 0

0 −1 0
0 0 0

 , H2 =
0 0 0

0 1 0
0 0 −1

 ,

Eα1 =
0 1 0

0 0 0
0 0 0

 , Eα2 =
0 0 0

0 0 1
0 0 0

 , Eα1+α2 =
0 0 1

0 0 0
0 0 0

 ,

E−α1 =
0 0 0

1 0 0
0 0 0

 , E−α2 =
0 0 0

0 0 0
0 1 0

 , E−(α1+α2) =
0 0 0

0 0 0
1 0 0

 .
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