学科与科研
学术交流
首页 >  学科与科研 >  学术交流 >  正文

From Machine learning to Quantum Entanglement

时间:2017-12-11  来源:   作者:

 

报告人:陈靖,中科院物理研究所,博士

报告时间:2017.12.11(周一)下午3

报告地点:LE523


摘要:Machine learning has been developing fast and achieved great success in different fields. Physicists also try to introduce the machine learning to physics. From simulating wave function, phase classification to DFT. On the one hand, we hope that the experience of algorithm and hardware will benefit the computational physics. As a concrete example, we proved the equivalence between tensor network and restricted Boltzmann Machine in machine learning. On the other hand, we show that the concept of quantum entanglement will help to qualify the power of different neural network structures.

References:
On the Equivalence of Restricted Boltzmann Machines and Tensor Network States. arXiv:1701.04831
Jing Chen, Song Cheng, Haidong Xie, Lei Wang, Tao Xiang


报告人简介:
 Graduate at Physics from East China Normal University (2010), Master’s and DSc. at Physics from Institute of physics, CAS (2017). He will move to Flatiron Institute of Simons Foundation, New York, USA as a postdoctor.During the graduate study, Dr.Chen focus on developing DMRG and tensor network methods and applications on classical models and quantum problems. By high-order tensor network renormalization group, he and his coauthors benchmarked the 3D Ising critical point. They also calculate ground state for Anti-ferromagnetic Heisenberg on Kagome lattice by PESS methods. In the last year they had shown the inner connections between some neural network with tensor networks and proved the restricted Boltzmann machines belong to a subset of tensor network family.

学院概况
学院简介
现任领导
组织结构
师资概况
新闻公告
通知公告
学院新闻
规章制度
人才招聘
会议室预约情况查询
本科人才培养
精品课程
实验教学
教研活动
教学管理
教学成果
大学物理教学实验
研究生培养
学位概况
导师简介
招生简介
招生信息
培养管理
答辩授位
学科与科研
研究进展
科研工作
研究机构
学科建设
学术交流
博士后流动站
学生工作
学风建设
文化生活
贫贷困补
就业工作
党群工作
党委工作
团委工作
工会教代会工作
语言文字工作
理论学习
安全工作
资料下载
其他